
Technical University of Munich
School of Engineering and Design
Prof. Dr. Martin Werner

Computational Foundations I (Winter Term 2021/22)
Tutorial 3

Tasks marked with a star like Optional Task* are optional. Tasks marked like Hard Task+ are given, but it
is not expected that you solve them now. It is great if you learn to solve them during the lecture. Go back to
them after a few weeks and see your own progress.

Learning Outcome: You practice some aspects of Turing machines, you learn how nested loops
can be used to find permutations, you learn how least-squares problems are solved in MATLAB, and
you optionally see a story for a real-world application of this principle in GNSS (Global Navigation
Satellite Systems, for example GPS, GLONASS, or the European Galileo) and other distance-based
positioning systems.

Task 6: Turing Machine

The Lecture introduced Turing Machines and how to write programs for them. In this task we will
practice to implement some simple turing machines.

a. Even Number: Create a Turing Machine that accepts all even numbers. Remember that a
Turing machine accepts a language (e.g., set of strings) if the machine terminates for all of
them in a accepting state. You can declare any state to be accepting, introduce maybe two
states accept and reject and let the Turing machine go into accept for even numbers
and into reject for uneven numbers. Tip: Formulate the machine with pen and paper.
This is what you need to learn. Only after formulating the machine, feel free to test it, for
example on https://www.turingmachine.io/

b. Even Numbers with Result on Tape: Create a Turing Machine that accepts all even numbers
and writes ε Nε for uneven or ε Yε for even numbers. If you did not find a solution for the
previous tasks, write two Turing machines: both start out by clearing the current word on
tape (walk right until you find an empty, walk left writing emtpy until you find an empty.
The first machine, then writes ’Y’ onto the tape, the second one ’N’.

c. Unary Addition: Create a Turing Machine that adds two numbers given as a string III+II
on the tape. Make sure that the Turing machine ends on the beginning of the result. Note
that the solution can be rather simple.

d. Doubling Chars: Create a Turing Machine that doubles every occurence of the letter a on a
tape.

e. Reversing: Create a Turing Machine that reverses the contents of a tape. By this, we mean
that the result consists of the same characters in the opposite order.

Task 7: Permutations

Sometimes we need to look at different combinations of a set of inputs. This means we need to
generate all possible permutations of an input set.

https://www.bgd.lrg.tum.de/
https://www.bgd.lrg.tum.de/
https://www.bgd.lrg.tum.de/
https://www.moodle.tum.de/course/view.php?id=72588
https://www.turingmachine.io/


2 Computational Foundations I – WiTe 2021/22, Tutorial 3

a. Permutations of 3 Numbers: Given a vector with 3 different numbers like [1,2,3] write
a MATLAB program that generates all possible permutations into a new matrix each per-
mutation on a new row. The output should be a matrix with three columns and each row
being a different permutation, that is, similar to [[3, 2, 1]; [2, 3, 1]; [2, 1,
3]; [3, 1, 2]; [1, 3, 2]; [1, 2, 3]].

b. Permutation of a vector: Extend the previous program to create all permutations of a vector
of 4 values.

Task 8: Method of Least Squares*

When working with measurements from the real world errors are unavoidable. These errors can
often be reduced by using multiple measurements. Since these measurements will contradict each
other we need a method to resolve this contradiction.
Assuming, that the relationship between measurements and the actual values, we can create the
system of overdetermined linear equation

Ax = b

where b = (b1, . . . , bn) contains the measurements, x the actual value we want to infer and A
expresses the theoretic relationship between them. We also assume that A has maximal rank,
meaning that the column vectors of A are linearly independant. Because the perfect solution
for x does not exist, due to the errors in measurement, we are looking for the value of x which
minimizes the norm of the residium r(x):

√︃ ∑
i=1..n

r2i = ||

⎛⎜⎜⎜⎜⎝
r1
...
ri
...
rn

⎞⎟⎟⎟⎟⎠ || = ||r(x)|| = ||b−Ax||

A perfect solution would be a a norm of zero. For the Euclidian norm we can simplify the term by
squaring both sides, as the norm is defined as the square root of the scalar product, therefore a
minimal norm corresponds to a minimal scalar product. We can formulate the following equation:

||r(x)||2 = (b−Ax)T (b−Ax) = xTATAx− 2xTATb+ bTb→ min

As we want to find the minimum we can use differential calculus and set the first derivative to
zero:

∂

∂x
||r(x)||2 = 2ATAx− 2ATb = 0

This equation is called normal equation of an overdetermined system of linear equation Ax = b and
is usually given in the equivalent form:

ATAx = ATb

ATA is a positive semi-definite, symmetric matrix. As a result the equation can easily be solved
for x as it is not overdetermined anymore. This x minimizes the error function norm. The Gauss-
Markov theorem actually proves that this algorithm provides a best, linear, unbiased estimate
value of x. Which is in asense the most probable value of x given the set of measurements.

a. Using the measured values b = [14.1000;25.9000;18.0500;41.9500] and a matrix
of A = [1,2,3;4,5,4;6,3,2;7,7,7], calculate the normal equation in MATLAB. Note
that matrix transposition is available in MATLAB either as a symbol like in A’ or as a function
like transpose(A).



Computational Foundations I – WiTe 2021/22, Tutorial 3 3

b. Solve the normal equation set up in the previous task with MATLAB. Note that it is not
good practice to compute the inverse of the matrix A, as its realization in main memory
can produce fatal rounding errors. It is better to recall the right division in MATLAB from a
previous sheet.

c. As the equation is overdetermined, the solution will not be exact. Compute the vector of
residual values

r = b−Ax

and its size
||r||

For the size, consider using the MATLAB function norm.

Task 9: Lateration+

Follows.
Lateration is a technique for deriving the location of a point in space by measuring the distance to
a number of points, whose location is known. This technique is used in GNSS systems including
GPS, Galieo, or GLONASS where the distance is measured by signal travel time. Note that in these
cases, in addition to the three unknown coordinates, there is a fourth one representing a very
accurate time. More information on this can be found by searching for Time-of-Arrival on the
Internet.

Here c1, c2, and c3 are the the known positions with the measured radii r1, r2, and r3 And p is
the point we are looking for.
Put formally the location p = (x, y) must fulfill all equations ki describing circles around the
known centers ci = (xi, yi) with measured radii ri:

ri = ki(x, y) =
√︁
(xi − x)2 + (yi − y)2i = 1..k



4 Computational Foundations I – WiTe 2021/22, Tutorial 3

This is a nonlinear problem and therefore the least squares algorithm can not be used directly.
Instead we can use an iterative approach based on starting with a coarse estimation of the lo-
cation p. Then we can use the taylor approximation to linearize the system of equations. This
linearization is only valid around the previous location and can be solved using the least squares
algorithm. The linearization is based on the following Taylor expansion:

f(x) =
∑

i=1..n

fi(x0)

i!
(x− x0)

i + Rn+1(x, x0)

Here, the Term R collects the remaining error of using a finite sum. In order to linearize a system
of equations using Taylor expansion, we can set n = 1 and ignore R. For our case of lateration, we
need the partial derivatives in both directions to construct the Taylor sum as a vector expression.
These partial derivatives are given as follows:

∂

∂x
ki(k, y) = −

xi − x√︀
(xi − x)2 + (yi − y)2

∂

∂y
ki(k, y) = −

yi − y√︀
(xi − x)2 + (yi − y)2

Let now (x̃, ỹ) denote the current estimate of the location p, then using the measurements ri we
are left with the following system of linear equations:

ri = ki(x̃, ỹ) +
∂

∂x
ki(x̃, ỹ)(x− x̃) +

∂

∂y
ki(x̃, ỹ)(y− ỹ)i = 1..k (1)

Introducing the notation x̂ = x − x̃ and ŷ = y − ỹ, we get an overdetermined system of linear
equations for which the least squares method can be applied directly. This results in a vector
expressing a correction of the current location estimate (x̂, ŷ) this can be added to the the last
location estimate and the process can be iterated.

1. Simple Form of Equation: Use the values from below and fill in Eqation (1). bring it to the
form Ax = b. What are the values of A and b?
When looking closely, you will see that when putting in the constant values for the measurements
and the known locations into Equation 1 that only two variables remain. These form together
the vector x = (x̂, ŷ) you want to solve for. The solution is not the location we are after, but due
to x̂ = x− x̃ an offset to improve the current location estimate x̃ (same for y)

2. Program the Matrix and Constants: Implement the following procedures:

function ret = get_A(tilde_x, tilde_y, C, r)

end

function ret = get_b(tilde_x, tilde_y, C, r)

end

In this context, the matrix C will hold the known locations, r the measured radii:

C =

⎛⎜⎜⎝
x1 y1
x2 y2
x3 y3
x4 y4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 0
10 0
15 0
0 12

⎞⎟⎟⎠ r =

⎛⎜⎜⎝
r1
r2
r3
r4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
2.92
8.14
15.46
9.89

⎞⎟⎟⎠
Feel free to simplify the signature by removing parameters you don’t need.



Computational Foundations I – WiTe 2021/22, Tutorial 3 5

3. Location Estimation: Given the previously mentioned set of locations and measurements
calculate the estimated location correction in each step, starting with the initial location
estimate (x̃, ỹ) = (20, 20). Report this vector for at least 3 steps. Then run the program for
seven steps and report the final result. Try to implement a version with a while loop that
stops as soon as the error (as measured by the residuum) does not decrease enough.


