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Abstract—Indoor navigation and location-awareness are im-
portant and growing research areas due to the interest of
mobile users in location-based services comparable to outside
services. However, indoor positioning is a very hard task. Without
installing dedicated hardware into a building, indoor positioning
is a problem with inherent ambiguity. Using Wi-Fi signals to
calculate location is a classical and successful approach for
localizing mobile devices in buildings. With this paper, however,
we provide support for proximity detection using Wi-Fi, which is
considerably less ambiguous and still sufficiently useful for many
indoor location-based services. Additionally, presence-based po-
sitioning has seen a boost in adoption due to the invention
of cheap dedicated devices for localization including iBeacon
and similar Bluetooth 4.0 beacons. We provide a concept called
Virtual Anchor Point, which is a low-dimensional representation
of the essence of a point in signal space providing a presence-
based location-aware system.

I. INTRODUCTION

The immense diffusion of modern mobile devices, such as
tablets or smartphones, has involved a tremendous usage of
mobile applications in recent years. A remarkable amount of
them require access to the user’s current location information
in order to provide specific context-aware services. The benefit
of such location-based services (LBS) is highly sensitive to the
accuracy of the underlying positioning technique. While GPS
is commonly used for outdoor scenarios, it neither operates
well within buildings, nor does it meet the requirements for
an accurate indoor positioning system. Hence, other techniques
are required in this context in order to provide feasible indoor
location based services (ILBS) such as indoor navigation
applications.

A lot of research has been done with respect to this topic
to provide adequate positioning information for ILBS. Several
techniques and approaches have been investigated to improve
important features of indoor positioning systems, e.g. accuracy,
precision, cost, scalability. However, up to now, none of these
investigations presents an overall solution which perfectly
meets all requirements. For global adoption, wireless local area
networks, commonly known as Wi-Fi, have been emerged as
one of the most promising technique, due to the fact, that Wi-
Fi infrastructures already exist in many buildings all over the
world.

Nevertheless, accurate Wi-Fi based indoor positioning re-
mains challenging, due to several aspects: first, received sig-
nal strengths of access points show high fluctuations within
buildings (mainly caused by multipath propagation effects)
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rendering trilateration imprecise. Second, pattern matching
approaches, e.g, the well-known Wi-Fi fingerprinting, require
a lot of efforts for creating and maintaining radio maps. Third,
time-of-flight approaches suffer from inaccurate timestamping,
due to missing precise timer providing nanosecond resolution.

In order to overcome the mentioned problems for Wi-Fi
based positioning, special low-cost devices based on Bluetooth
Low Energy (BLE) have been brought to market. The so-
called beacons provide highly accurate and simple proximity
detection, which is accessible in three threshold steps: far, near,
and immediate. Furthermore, they are widely supported by
common mobile operating systems, such as iOS and Android.

While accurate proximity detections becomes possible in
the vicinity of such beacons, this technique suffers from low
scalability, due to the small coverage range of about 10 meters
per beacon. Hence, a seamless indoor navigation based on
beacons is hardly realistic for large buildings, such as airports
or shopping malls, due to the immense amount of beacons
required.

With this paper, we propose a novel solution to this problem
with a method that supports a proximity-like interface from
time series of Wi-Fi readings. The basic idea is to detect cer-
tain locations inside an area of interest showing unambiguous
patterns of receivable Wi-Fi signals. These locations are stored
as Virtual Anchor Points (VAPs) and can be additionally used
for indoor navigation in order to reduce the required amount
of physical devices, like beacons. For scalability reasons, we
present an efficient way for the detection of suitable VAPs
from time series, using an embedding into a lower-dimensional
Euclidean space. Common dissimilarity functions such as the
Euclidean dissimilarity or the inverse of the Jaccard coefficient
are statistically analysed and used for multidimensional scaling
for embedding VAP candidates. Our methods and findings are
evaluated with respect to the quality for proximity detection on
VAPs using a real world Wi-Fi dataset recorded in our office
building.

The most important thing to note is that the detection and
location of Virtual Anchor Points is done in signal space alone.
There is no need for any mapping between annotated locations,
anchor points, and maps. Instead, the system just informs the
service that a locally unique location has been traversed and
these locations can then be mapped in another step.

The main contribution of this paper is an approach to
identify locations where Virtual Anchor Points are non-
ambiguously detected from a stream of Wi-Fi signals in a
lower-dimensional model space.
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The remainder of the paper is structured as follows: Section
II reviews related work, Section III shortly recalls our indoor
location-aware system based on time-series analysis, Section
IV explains the methodology to find Virtual Anchor Points,
Section V evaluates the methodology on a large dataset, and
Section VI concludes the paper with some hints on future
work.

II. RELATED WORK

Indoor positioning techniques are well studied as the basis
for indoor navigation. Liu et al. [1] present a detailed survey of
common wireless indoor positioning techniques and systems.
The most auspicious technique in this field is Wi-Fi, due
to its’ standardized usage and the overall existence in most
public buildings. One of the most widely adopted approach
to pervasive indoor positioning based on Wi-Fi is called
fingerprinting. The first work into that direction might be
RADAR proposing a weighted k-nearest-neighbor approach
applied to RSSI readings in oder to infer the location of a
mobile target [2]. Lately, this technique has been extended to
include compass readings as a pre-filter improving the accu-
racy of the positioning process [3]. Furthermore, Wi-Fi has
been investigated for time-of-flight indoor localization using
off-the-shelf infrastructures [4], and also for an involuntary
tracking of people in an area of interest [5]-[8].

Indoor location-aware systems have been proposed using a
large range of methods. A general introduction to this area of
research can be found in [9]. The most promising methods
for pervasive location awareness include approaches based on
image recognition [10], [11], GNSS inside buildings [12], and
Wi-Fi [2], [3] signal strength. Most other approaches either
need a dedicated infrastructure, detailed map information, or
a personal calibration procedure such as in pedestrian dead
reckoning.

Another upcoming technique for indoor location awareness
is based on Bluetooth Low Energy. Bluetooth Low Energy is
an extension to the Bluetooth standard providing Bluetooth
services with a very low energy consumption. It has been
used to create battery-powered beacons, which send out their
own identification in regular intervals and can be used by
recent smartphones to assess the proximity to the beacon.
Commercially, Bluetooth beacons are promising as iPhones
support this approach through Apple’s iBeacon technology
and Android supports beacons via Google Eddystone. Beacons
serve as a cheap extension to Wi-Fi positioning and can
overcome gaps in coverage. However, they still produce high
cost, due to distribution and maintenance overhead.

The work presented herein is partly based on trajectory
computing, which is the area of computing concerned with
time series in spatial domains. A good overview to this area
is given in [13]. This research area has first been applied to
Wi-Fi positioning for destination estimation [14].

As a tool, this work uses multidimensional scaling (MDS),
which can be described as follows: a distance matrix of loca-
tions is given to a system trying to find the best configuration
of locations in a Euclidean model space of a fixed dimension

by resembling the ratios of the given distances. In other words:
the system finds a set of points (“configuration”) from an
Euclidean space such that the relative distances between points
are preserved as much as possible.

Concretely, MDS minimizes the Kruskal stress

o(X) = (wi (i — di;(X)))?

i<j

In this equation, §; ; denotes the distance between object i and
J, di j(X) denotes the distance between point ¢ and j in the
model space, and w; ; weights the contribution of the distance
between object ¢ and j and can be used to model missing
values by setting w; ; = 1 for all available values and zero for
missing distances. This is especially useful for RSSI-based
fingerprints in buildings, which might have no access point
in common making it impossible to measure any dissimilarity
between them.

A commonly used algorithm for calculating MDS configu-
rations is named SMACOF [15], [16]. The central tradeoff in
MBDS is between the number of dimensions and the quality of
the embedding.

III. NAVIGATION FROM TIME SERIES OF SENSOR
READINGS

In a recent paper, we proposed a novel approach to Wi-
Fi location awareness in which time series of signal readings
are collected [14]. Additionally, these are sparsely labeled at
important rooms (e.g., by asking the user for a label when the
phone is not moving for a given time).

This creates a dataset of time series of signal strength
readings for beacons of surrounding access points. The dataset
used in this study is the same as we used for the original
study. The modeled location labels and a two-dimensional
embedding of these labels is depicted in Figure 1(a). This type
of data has been collected by an Android application, which
is depicted in Figure 1(b) showing part of such a time-series.

In this application, the dataset was segmented into pieces
of trajectories and an incoming trajectory has been used to
assess the most probable destinations of the mobile device.
Using the Fréchet distance, the system was able to correctly
predict the destination of the mobile user quite early and with
high accuracy, a demo video is available on YouTube!. The
Fréchet distance between two time series ¢; and ¢y is based
on calculating the minimum length of a leash connecting a
dog walking on ¢; and and his owner walking on t9, both
never going backwards. It is a true metric and especially well-
behaved with respect to noise as it contains the noise level only
once and does not sum up noise terms for different points in
times. However, it is very susceptible to outliers, as it only
remembers the minimum length of the leash. Variants for using
the mean, median or another summary statistic of the leash
length over time have been defined to alleviate this.

Uhttps://www.youtube.com/watch?v=FHoHcRIK _j8
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(b) App showing time series of Wi-Fi readings

Figure 1. Positioning System based on sparsely labeled time series [14].

IV. METHOD

The most important advantage of using RSS time series in
indoor navigation is given by the fact, that training databases
do not need a full spatial assignment: Only the start and end
points of important paths must be labeled and, furthermore,
these are often distant to each other. Hence, a simple position-
ing system with room level accuracy would already provide
sensible labels for automatically extracting those trajectory
annotations. Especially, the data can be used without stand-
ing in a specific location, waiting for a specific time, and
rotating oneself with the measurement device, which is the
time-consuming best practice for fingerprint-based positioning
systems.

This, however, comes with a drawback of small support:
The location can almost never be extracted in the online phase.
Essentially, the system always only predicts the final location
of the current trip. With this paper, however, we want to exploit
all labels that have been given to the system as part of any
trajectory and extract those in trajectories in the online phase.
This extends the support of the system by a large amount.

In order to do that, we define the concept of Virtual Anchor
Points. However, distant points in Wi-Fi signal space are often
incomparable with each other due to not containing the same
access points limiting the usefulness of fingerprints. In order to
overcome this principal limitation, we project all fingerprints
into a lower-dimensional Euclidean space in a way such that
similarity of nearby points is preserved as much as possible
and define Virtual Anchor Points as locations in this Euclidean
model space.

With this paper, we want to exploit the existence of such
special locations in the Euclidean model space in order to
allow for a proximity-style positioning inside the query time-
series. Therefore, we conduct a statistical analysis on how
to choose the dissimilarity function in signal space, which
dimensionality the model space needs to represent the signal
space sufficiently, how weightings can be used to improve
the separation of projection points and, finally, how to detect
proximity to anchor points.

A. Building the Euclidean Model Space

First of all, we use Wi-Fi trajectories to extract promising,
unambiguous locations, which we call Virtual Anchor Point
candidates. The Wi-Fi trajectories used in this work contain
timestamps associated with BSSIDs (i.e., the MAC address
of the access point) and their respective signal strengths
indicators. Furthermore, some timestamps include names of
places in the building that are described as annotated places.
In order to generate candidates, we use a time window of five
seconds around an annotation to capture signal readings with
respect to signal strength variations. Based on this window, an
average signal strength of each measured BSSID is calculated
as well as its respective standard deviation. Thus, for each
annotation in the trajectories we have a set C’ of quadruples
(b, 1, 0,n) with b denoting the BSSID, x and o describing a
normal distribution using mean and standard deviation and n
denoting the number of samples.

Multiple distant time windows for the same location are then
merged with the partioning algorithm of Chan et al. [17] and
the resulting set C' describes a candidate for a virtual anchor
point.

For embedding these candidates in an Euclidean model
space, a dissimilarity function is needed to create a dissim-
ilarity matrix for the multidimensional scaling algorithm.

An obvious function is given by adapting the Euclidean
distance to all BSSIDs two sets have in common. Given two
anchor point candidates C, and C, let I denote the set of pairs
of mean values (p,, ) of readings in C, and C, with the
same BSSID. With these names, the Euclidean dissimilarity
can be defined as

ifI=0

else.

o,
e IV S R
(D
Note that this definition is not a metric: let C, contain
two SSIDs S and T, C, contain two SSIDs T and U, and
C contain two SSIDs U and V. Then both dgyc.(Cy, Cy)



and dpycl. (Cy,C;) are finite, but dgya. (Cy,C;) is infi-
nite. This violates the triangle inequality dgyc. (Cy,C.) <
dEuclA (Cx7 Cy) + dEuclA (Cya Cz)

The Euclidean dissimilarity dgyc). has the disadvantage that
is does not take the size of the intersection |I| into account. In
order to incorporate this information as well, the dimension-
normalised Euclidean distance uses this number:

00, ifI=0
dDN—Eucl.(C937 C’U) = 1

2
] Z[(Mm*/iy)Qa @

else.

Moghtadaiee and Dempster [18] proposed the Chebyshev
metric for calculating distances in signal space, thus, we
adapted this function for our use case, too:

0, if I =0

max (|pe — f1y]),  else.

dCheb.(Czy Cy) = { (3)

Since the signal strength measurements vary highly over
time, we considered using a signal strength agnostic function,
relying only the present and absent BSSIDs. The inverse of
the Jaccard coefficient for similarity of sets results in a metric
called the Jaccard metric:

B ]
|Ca| +1Cy| = 1]

In contrast to all other functions presented above for com-
paring time surroundings, this dissimilarity is a true metric as
it is able to deal correctly with empty intersections.

We perform the embedding into an Euclidean model space
using multidimensional scaling with respect to all of these
dissimilarity functions. In multidimensional scaling, the task
is to find a set of locations in a given Euclidean space such
that the Euclidean distance between those locations resembles
the distance matrix given to the algorithm.

We use these locations in the Euclidean model space to
identify the candidates, which are unique and unambiguous
with respect to all other candidates.

dJaCC.(CZ7 Cy) =1 (4)

B. Finding unique anchor points

The uniqueness of an anchor point candidate is expressed
by the standard deviation of the set of measurements taken.
Therefore, we need to map this standard deviation into the
model space as well. We first calculate the mean standard
deviation of a candidate C.

_ 1
oc = m Z o (@)
(b,p,o,n)EC

For scaling this value into the model space, we calculate the
mean ratio between the distances in signal space and model
space.
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Figure 2. Sphere Distance

with C denoting the set of all candidates C.

Since we are interpreting the candidates as spheres in a low
dimensional space and the mapping using 7 is very coarse,
we add a scaling parameter p and define the distance between
two such spheres d,, as illustrated in Figure 2 and expressed
by the following equation:

dsph(-r7 y) = dmds(xvy) —pP-T: (51 + 5y) (7)

This sphere distance can now be used to check if two can-
didates intersect each other, i.e. the sphere distance dp, > 0.
Using this definition, we define a Virtual Anchor Point as
a Virtual Anchor Point candidate, which does not overlap
another candidate.

z€Cis VAP & Vye Cy#x:dgpn(z,y) >0  (8)

After removing intersecting candidates in the set, the re-
maining candidates are true Virtual Anchor Points. This set
is denoted as V,, depending on the scaling factor p used for
creating the set. These points can now be used in the online
phase for predicting the nearest Virtual Anchor Point to the
current time series.

Figure 3 depicts an illustrative projection of Virtual Anchor
Points in the model space generated with multidimensional
scaling. Each Virtual Anchor Point has a radius from the scaled
mean standard deviations of the observed signal strengths.
Although, some seem to be quite close to each other, these are
separated in other dimensions. Please note that the number of
dimensions has to be derived from the dataset. This will be
explained in detail in the evaluation.

C. Proximity detection

The Virtual Anchor Points identified during the offline phase
can now be used to create a location-based service. Therefore,
we compare the Wi-Fi access points within range m with the
ones seen in the different Virtual Anchor Points V,, and predict
the nearest anchor point. Consequently, the classification is
done with a nearest neighbour classifier.

argmin, ¢y, {d(v,m)} )
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FIFO-queue used during the online phase with two different

Since Wi-Fi signals strengths vary highly at a single place
[19]-[22], we evaluate several different methods for estimating
the nearest virtual anchor point. In addition to the single
measurement classification, we use a First-In-First-Out queue
and predict the nearest anchor point based on the last five
measurements. This is in accordance with creating the can-
didates, which are summed up of a time window of five
seconds. Figure 4 shows the queue. Firstly, five measurements
can be aggregated in two different ways with the union set
or the intersection set of all received BSSIDs. Secondly, the
measurements can be collected into means per access point or
treated individually resolving the many classification results
via a majority voting approach.

If the aggregation is done using the union set method,
all observed BSSIDs are taken into account, whereas the
intersection method calculates the set of BSSIDs that are found
in each of the five measurements. In both cases the result set
also includes the mean of each signal strength of a BSSID as
well as its standard deviation.

Additionally, we reevaluate all four dissimilarities discussed
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Figure 5. Stress, Stability and Cross values for different distance metrics
when using candidates from the signal maximum and the annotated places
method and embedding them in a two dimensional space

above with respect to their suitability for the nearest-neighbour
classifier within the different methods.

V. EVALUATION

In this section, we concentrate on the questions of how to
build the model space and how to extract meaningful anchor
points from the given dataset type more concretely. We applied
the previously described method to the dataset presented in
[14]. The whole dataset consists of 9,245 fingerprints including
278 different Wi-Fi access points in a university building. Out
of this dataset, 49 candidates for Virtual Anchor Points could
be extracted and were used for optimizing the parameters for
the multidimensional scaling using the SMACOF algorithm.

A. Building the Euclidean Model Space

First of all, we need to choose a suitable distance function
for creating distance matrices between candidates. Therefore,
we created distance matrices for various dissimilarity measures
with all candidates and ran a MDS using default parameters.

Figure 5 shows three values: stress, stability, and cross
validity from a Jackknife validation of the multidimensional
scaling. The stress captures the mean difference between
the distances given and the distances in the model and is
independent of the Jackknife validation. The stability shows
the ratio of Between to Total variance [23] and the cross value
indicates the variance of different sampled configurations to
the actual configuration with all data points. Basically, the
goal is to find a distance metric with low stress, high stability,
and high cross values. Consequently, we chose the dimension-
normalised euclidean distance, which has the lowest stress
value with ~ (.28 and cross and stability measures ~ 1.00.

Next, we need to find the optimal dimensionality of the
model space for embedding the dataset using MDS. The higher
the dimension of the model space, the more degrees of freedom
exist in order to embed points. Therefore, it is easier for
the algorithm to find a configuration, which resembles the
given dissimilarities. As a result, the higher the dimension,
the lower the stress value and the stability and cross metrics



become more important. Figure 6 shows a decreasing stress
value with higher dimensionalities. Starting at ~ 0.28 with
two dimension, the stress can be reduced to ~ 0.24 at five and
more dimensions. At five dimensions both stability and cross
validity, have a local maximum with ~ 1.00. This finally led
to the choice of using a model space with five dimensions for
this dataset.
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Figure 6. Stress, Stability and Cross values for different dimensionalities
when using candidates from the signal maximum and the annotated places
method

Multidimensionate scaling with the SMACOF algorithm
allows to incorporate the reliability of each distance value
into the process by specifying a weight matrix. From the
assumption that the number of BSSIDs in the intersection is a
determinant of the reliability of the distance, we used the size
of the intersection as well as the Jaccard coefficient for weight-
ing. Essentially, this leads to ignoring those cases, where the
given distance matrices contain infinity and strengthening the
influence of large intersections. The Jaccard weight matrix
reduces the stress value to ~ (.21 with the same stability
and a cross value of ~ —32.57. This extreme cross validity is
observed due to the different configurations in sampled weight
matrices and can therefore be ignored.

In summary, the best approach turned out to run the
MDS using a dissimilarity matrix based on the dimension-
normalised Euclidean dissimilarity and a weight matrix filled
with Jaccard coefficients between all candidates and embed
this into a five dimensional Euclidean space. Thereby, we were
able to reduce the stress by 25% in comparison to the default
parameter stress.

A well-known visualisation for quality assessment of em-
beddings is given by Jackknife-plots [15], which show a two-
dimensional projection of the configuration resulting from
the MDS. Additionally, these plots show the variance that
is introduced by the Jackknife validation leaving out some
information.

Figure 7 shows a projection of the final configuration in the
first two dimensions. On the one hand, there are candidates
that are clearly separate from all other, on the other hand a
cluster of candidates is formed in the lower right corner. Note

that these candidates will be apart from each other with respect
to another dimension.

B. Finding Ungiue Anchor Points

In order to find the candidates, which are separable in the
five dimensional space, we needed to find a scaling factor 7 to
scale the mean standard deviations from the high dimensional
signal space into the five-dimensional model space. In our
case, 7 was calculated to be approximately 3.12.

Choosing a scaling parameter of p = 1.0, 20 Virtual Anchor
Points are filtered out of the 49 candidates. Increasing p to 1.5
leads to six anchor points, while decreasing it to 0.5 results
in 41 anchor points.

Dimension 2

-2

Dimension 1
Figure 7. Jackknife plot showing the first two dimensions.

C. Quality of Proximity Detection

For predicting the nearest Virtual Anchor Point we use
a nearest neighbour classifier, which implies the need for a
suitable distance function. As ground truth, we use the given
annotated places and compared the classification results to
the nearest label in time from the trajectories. We evaluate
the four dissimilarity functions as discussed above once again
with respect to their performance within the classifier. Figure 8
shows that the Jaccard distance outperforms all other functions
by more than 10 % with an average F1 value of 0.44. The
signal strength based similarity functions result in a maximum
F1 measure of 0.40 for the dimension-normalised Euclidean
similarity and a lowest F1 measure of 0.34 for the Euclidean
similarity.

This outstanding result of the Jaccard distance is probably
due to the fact that this function does not take signal strengths
into account, but is calculated based only on the present and
absent BSSIDs. As near candidate points have already been
rejected in a previous step, the overlap of BSSIDs has become
a sufficient indicator of nearness.

With regard to the method, there is no clear winner. In
combination with the Euclidean dissimilarity functions, the



single method provides the best F1 values with a mean of 0.38.
The intersection method is best when used with the Chebyshev
dissimilarity. Together, they achieve a F1 value of 0.38. In case
of the Jaccard function the best result is a F1 value of 0.46 with
the union method, which is the overall best value. Therefore,
we used this combination for all following evaluations.
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Figure 8. Evaluation of distance functions and classification methods with
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As a final step, we evaluate the impact of the scaling factor
p on the classification results and measured the classification
performance for different post-scaling factors 0 < p < 2.

Figure 9 shows the three classification metrics precision,
recall and F1-measure depending on p. Setting p = 0 implies a
sphere radius of 0, thus all 49 candidates are considered Virtual
Anchor Points. This results in a precision and a recall of 0.5,
which is also true for p < 0.3. For 0.3 < p < 0.4, the recall
has a local maximum and therefore the F1 measure in this
interval has a local maximum, too, since the precision remains
almost unchanged. Starting at p = 0.5 the F1 measure is
falling down to 0.36 at p = 1.5. While the recall is decreasing
with higher values of p, the precision has local maxima of 0.53
at p = 1.1 and p = 1.3. Since there are fewer Virtual Anchor
Points with higher values of p the probability of choosing
the right anchor point by chance is much higher. Thus, a
lower value of p is more suitable for real world applications.
Therefore, we choose p = 0.4 for the dataset.

A closer look at the classification results of the single anchor
points revealed that there are significant quality differences
between the different anchor points. 22 out of 47 virtual anchor
points can be classified with a precision > 0.5 and only six
anchor points show a precision of less than 0.25. Additionally,
we investigated the false classifications in a confusion matrix
and compared them to the spatial arrangement in the real
world. As to be expected, most of the wrongly classified
measurements were assigned to nearby anchor points with
the most erroneous ones being just a few meters away from
the next virtual anchor point. Since the true nearest Virtual

1.00 4

0.754

Value

0.254

0.00

0.0 05 10 15
Post scaling factor

— Recall ---- Precision ---/F1

Figure 9. Evaluation of recall, precision and F1-measure for changing scaling
factor p.

Anchor Point of a measurement was derived from the next
anchor point in time during the recording of the trajectories,
our evaluation is a pessimistic estimation of our method.
Hence, our evaluation can be seen as a lower bound of the
classification performance with a mean Fl-measure of 0.51
consisting of a recall of 0.50 and a precision of 0.52. A live
demonstration of our system can be found on YouTube?.

VI. CONCLUSION

With this paper, we have shown that it is possible to ap-
proximate the high-dimensional non-Euclidean space of RSSI
readings in which every access point creates a new dimension
and distance between points is only defined between the sets
of access points visible in two different locations by a quite
low-dimensional Euclidean model space.

First, this completes the distance relation: It is now possible
to calculate a distance between any two fingerprints based on
the assumption that the system stress minimization of the MDS
process is sane.

As there is no mapping between spatial locations, RSSI
readings, or the model space, we have redefined the positioning
problem as a problem of finding locations in the Euclidean
model space which are safely distinguishable from other
locations. Here, different locations are extracted using the time
domain of a time series of RSSI readings.

In a previous paper [14], we have shown how to use a simple
labeling approach of important places (e.g., only the beginning
and end of each trip through the building) in order to predict
the next location in time.

With this paper, we sucessfully extended the coverage of
the system for Virtual Anchor Points inside time series, even,
where no labels have been modeled. An application can now

2https://www.youtube.com/watch?v=8ikqTx AJ8mk



use these Virtual Anchor Points for several tasks: it could ask
users to manually assign locations in a map to these points
or the system could just trigger beacon-like presence events
for Virtual Anchor Points augmenting an existing or planned
beacon infrastructure.

This approach poses an additional interface for indoor
location-based services based on the time-series classification
approach in which proximity information inside the time
series is used. Additionally, this approach makes high-volume
analysis and classification of indoor mobility data feasible
by compressing high volume sequences of signal readings to
low-volume sequences of Virtual Anchor Point sightings. This
opens up indoor location analytics to scalable methods based
on string similarity.

For future work, we pursue two directions: First, we are
trying to extract the topology of the labels in an unsupervised
manner by matching Virtual Anchor Points. Second, we want
to revert the philosophy a bit: For now, we have used the subset
of sufficiently distinguishable locations near labels to create
Virtual Anchor Points. In future work, we want to extend
this set of anchor points with points in signal space, which
are sufficiently distinguishable from the current set of Virtual
Anchor Points and which have a sufficient support in the time
series set in the sense that enough people have observed these
places. These could then be pushed out to the service asking
users to assign labels to these additional locations.

In summary, this paper has shown that some geometry op-
erations (nearness, nearest neighbors) in RSSI-based location-
awareness systems can be performed inside a well-behaved,
low-dimensional Euclidean space in which a lot of scalable
algorithms (e.g., point indexing, time-series similarity search,
etc.) are defined. Additionally, we can further simplify to series
of discrete labels (e.g., the VAPs) opening up the application of
a wide range of sequence analysis algorithms mainly designed
for biological sequences or information retrieval.
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