
Accelerated Deep-Learning Inference on the Versal
adaptive SoC in the Space Domain

Michael Petry , Graduate Student Member, IEEE, Student Member, Optica, Gabriel Wuwer ,
Andreas Koch , Patrick Gest , Max Ghiglione , Martin Werner

Abstract—Artificial intelligence has found its way into space
and necessitates a powerful and flexible hardware platform to
keep up with the fast-paced AI domain. With the space-grade
variant of the Versal, AMD-Xilinx offers one of the first space-
ready AI accelerators that combine multiple compute paradigms,
i.e., scalar processing (CPU), adaptive engines (FPGA), and
vector processing (AI-Engine array) into an adaptive System-
on-Chip. This paper provides a thorough analysis of its AI
capabilities with respect to throughput and power efficiency for
Multi-Layer Perceptrons and CNNs, and takes a look under the
hood by profiling the system’s efficiency on an architectural level
based on the idea of the Roofline model. We believe that the
gained insights ultimately help to design optimal NN architectures
for deployment on the Versal.

Index Terms—fpga, hardware accelerator, neural network,
machine learning, AMD-Xilinx Versal, roofline model

I. INTRODUCTION

Future telecommunications satellites are envisioned to
seamlessly integrate into the mobile communication networks
of the next generation. First signs towards the integration are
already visible today with the ongoing normative activities on
non-terrestrial networks in the current 5G New Radio standard
[1]. This is a novelty for satellite manufacturers, as it marks
the first time that satellites are explicitly included in a mobile
communications standard [2]. Within the same scope, efforts
are made to integrate Artificial Intelligence (AI) / Machine
Learning (ML) techniques into orbit to serve various use-
cases, such as Cognitive Radio, Earth Observation, Anomaly
Detection, and many more. There is a major desire in the
satellite industry for deploying NNs and similar algorithms
directly on-board of the satellites in space. The main chal-
lenges associated with that desire are the limited power budget
and computing resources of satellites. Furthermore, due to
the requirement to operate in the harsh space environment,
telecommunications satellites are typically restricted to the use
of radiation-hardened hardware, and in particular space-grade
field-programmable gate arrays (FPGAs) as the most potent
parallel compute platform for AI inference in space [3].

With the Versal adaptive System-on-Chip (SoC) in the
XQR variant, AMD-Xilinx offers a chip in a space-grade

This work is supported by the German Aerospace Center (DLR) under
project Machine Learning on Telecommunications Satellites (MaLeTeSa)
with Grant number 50 YB 2103. Corresponding author: Michael Petry
(Email: michael.petry@airbus.com). M. Petry and A. Koch are with Technical
University of Munich (TUM) and Airbus Defence and Space GmbH (ADS),
G. Wuwer is with DHBW Ravensburg and ADS, Patrick Gest is with ADS,
Max Ghiglione is with European Space Agency, and Martin Werner is with
TUM.

package that is particularly targeted for machine learning
applications in space. By combining a scalar processing system
(PS) with a high-compute-density FPGA fabric and ASIC-
like vector engines, it promises more compute power at a
higher efficiency than traditional single-technology systems
[4], [5]. Its real strength, however, arises by utilizing these
three compute paradigms in concert to perform ML operations
in a deeply hardware optimized manner. To ease use for the
developer, AMD-Xilinx provides an Intellectual Property (IP)
block named Deep-Learning Processor Unit (DPU), which
comprises an FPGA hardware image, instructions for the AI-
Engines, and a data-handling and communication interface
to the PS. An initial evaluation of the design flow and the
basic capabilities of this framework on the Versal platform is
investigated in [6].

Since the DPU is merely a black-box for the user, pre-
dictions on performance and suitability of specific NN ar-
chitectures are hardly possible. Therefore, this work aims
at providing transparency by investigating how different NN
architectures impact the achievable performance on the Versal.
By utilizing a grid-search we sweep through various net-
work parameters to track throughput performance and power
demands within the IP’s core feature domain, i.e., Multi-
Layer Perceptrons (MLP) and Convolutional Neural Networks
(CNN). While this provides a broad superficial impression
on the DPU’s performance, we dive even deeper by profiling
various architectural properties, such as hardware execution
time, operational efficiency, and memory bandwidth utilization
to study the internal reasons for the observed performance.
This procedure aims at understanding how to design efficient
NNs for hardware-accelerated scenarios, ultimately benefiting
the complete range of ML application.

This paper is structured as follows: Section II provides a
brief survey of state-of-the-art AI hardware accelerators for
edge-deployment. Section III follows up on this by introducing
the Versal hardware platform and the DPU, including a brief
architectural review. The main contribution of this paper is
given in section IV, which provides a throughput and power
efficiency benchmark for several NN variations. Section V
dives into the architectural level by computing a Roofline
model, and investigates the origin of the observed behaviour.
Lastly, a conclusion and outlook of future work is given in
section VI.

https://orcid.org/0000-0002-8041-6246
https://orcid.org/0009-0005-5020-5543
https://orcid.org/0000-0002-1044-3142
https://orcid.org/0000-0002-3954-7324
https://orcid.org/0000-0001-6208-0745
https://orcid.org/0000-0002-6951-8022

II. STATE-OF-THE-ART AI ACCELERATORS

AI applications have found their way into our daily lives
by penetrating into multiple domains such as entertainment,
industrial, and health care, for instance with speech-to-text
translation on phones, on-the-fly video post-processing for
conference video chatting, and much more. ML-models have
been observed to increase in size and complexity by one
order of magnitude per year [7], which renders deploying
hardware-compatible updates extremely difficult or even im-
possible. This gave rise to huge research and development
efforts in building long-term hardware platforms. The prolif-
eration of resource-intensive ML applications has pushed the
tech industry into developing a ”smarter” hardware platform
that provides higher adaptivity and reprogrammability while
outperforming CPUs and GPUs in metrics such as power
and throughput. As a result, a variety of edge-targeted AI
hardware accelerators have emerged, whereas the most modern
platforms will be briefly summarized here.

The most popular AI accelerators are GPU-based. In terms
of AI edge deployment, NVIDIA leads the field with its novel
7nm Orin System-on-Module (SoM), which is a successor
to the Jetson platform. The Orin architecture comprises an
NVIDIA Ampere GPU architecture with up to 2048 CUDA-
cores, a 12-core ARM Cortex-A78 application processor, and
a silicon-based AI computation unit, called Deep Learning
Accelerator (DLA). The interplay of these elements makes the
module extremely capable, yielding 275 Int-8 TOPS theoretic
peak compute power at 4.58 TOPS/W, delivering superior
power efficiency.1 Native in-silicon execution of standard
ML operations, such as CNNs or pooling, paired with the
flexibility of a GPU provides the highest level of efficiency and
flexibility. However, optimal utilization of the GPU depends on
the concrete NN architecture to accelerate, since architectural
restrictions, such as memory bandwidth limitations or limited
interconnections between CUDA-cores, can pose significant
bottlenecks [8].

A similar approach is applied at Intel for their AI-optimized
Stratix NX series, which builds on 14nm FPGA technology.
By replacing standard Digital Signal Processing (DSP)-slices
in the fabric with 3960 AI-optimized Tensor Cores, a 15×
higher Int-8 fixed point compute performance is achieved for
matrix-matrix & matrix-vector multiplication, and element-
wise operations, yielding a total compute power of 142.6
TOPS at around 1.5 TOPS/W. Alternatively, Intel pursues a
second strategy with its Embedded Multi-Die Interconnect
Bridge (EMIB) technology, which allows integrating external
dies into the FPGA. One implementation that exploits this
interface for accelerating deep learning operations are the Intel
Stratix 10 FPGAs with TensorTiles [9].

Lastly, growing efforts go into designing custom
application-specific integrated circuits for the AI domain.
Google recently passed its fourth iteration for its Tensor
Processing Unit (TPU), matching the Orin’s compute

1We want to note, that the Orin platform supports sparse processing with
a sparsity factor of up to 2. It’s effective peak TOPS is therefore only half.

Integrated Software Programmable Interface

SW
Programmable

CPU

SW
Programmable

Vector Processor

HW-Level
Programming

SW Abstraction Tools

FPGA

PROGRAMMABLE I/O

Scalar Engine Adaptable Engines Intelligent Engines

Fig. 1. Overview of different types of programmable compute resources
integrated into the Versal’s heterogeneous platform [10].

capabilities at a reduced power efficiency of 1.62 TOPS/W.
However, the system is primarily not intended for standalone
deployment, since low-level communication interfaces allow
for clustering multiple of these boards. Other approaches
consider waver-scale ASICs that utilize a complete silicon
waver as one module without slicing individual chips.

In conclusion, it can be observed, that all modern AI-
targeted hardware platforms based on GPU or FPGA include
an AISC-like computation unit that is designed for specific
AI operations. This is a key enabler for power-efficient and
high-performance ML inference. However, none of the above
mentioned products or their competitors provide a space-ready
variant in terms of radiation-hardness or -tolerance. One ex-
ception that follows this approach is the Versal adaptive SoC,
which is a space-ready FPGA-based AI-optimized hardware
platform. The Versal is introduced in the following section.

III. VERSAL PLATFORM FOR DL INFERENCE

The previous section showed, that none of the prior men-
tioned technologies can be considered fully optimal, as they all
excel in one or more specific characteristic, but do not provide
a ”one size fits it all” solution. The Versal AI Core series,
introduced by AMD-Xilinx in 2019, is an approach to combat
the existing problems by unifying multiple technologies in one
SoC to extract and combine the best of all technologies. In the
following, we will provide a detailed look into this system.

The Versal adaptive SoC is a fully software-programmable
heterogeneous compute platform that combines scalar and
vector processing elements tightly coupled to next-generation
programmable logic, all interconnected with a high-bandwidth
network-on-chip (NoC). This concept is shown in Fig. 1.
Scalar processing, a domain where CPUs natively excel,
is essential for algorithms that exhibit frequently occurring
decision-based branches that control complex and nested
program flows. Vector processing, as implemented in GPUs
or DSPs, is optimal for domain-specific parallelization such
as signal processing, e.g., complex math or convolutions.
Lastly, adaptable hardware enables to operate on irregular data
structures and workloads under tight latency constraints by
providing flexible parallel compute and fast local memory,
ultimately enabling real-time control. This hybrid architecture
is promised to enable a performance increase through the

operation of multiple technologies in concert, outperforming
single-technology-only solutions [10].

The major workhorse for AI computation is, similar as for
the above technologies, an ASIC-like vector computation unit
called AI-Engine Array, which is detailed in the following
subsection.

A. AI-Engine Array

The intelligent engines, also called AI-Engines (AI-E) in
the context of the Versal AI Core series, are an array of very
long instruction word (VLIW) and single instruction, multiple
data (SIMD) processing units combined with dedicated data
and instruction memory. Each AI-E features dedicated fixed-
point and floating-point vector units. The units support various
combinations between eight 32-bit x 32-bit floating-point
MACs or 128 8 x 8 bit MACs per clock cycle through a full
permute unit with 32-bit granularity. Combining the VLIW and
SIMD approach, two vector input streams can be concurrently
loaded into the vector processing unit via a 256 bit-wide
stream, and saved back to memory via a 256 bit-wide store
unit, while performing additional functionality such as fix-to-
float conversion or non-linear activation in silicon, all using a
single 7-way instruction.

One of the strengths of the AI-E array lies in its ex-
tremely flexible interconnectivity. Thanks to various commu-
nication interfaces within the AI-E array, dataflow can be
optimally routed either through a 1-dimensional cascade or a
2-dimensional dataflow. Furthermore, tight integration with the
PL (0.96 TB/s) and the rest of the chip through the NoC (100
GB/s) avoids early memory bandwidth bottlenecks, although
we show in Section V, that this limit can indeed be reached
with certain NNs.

To utilize this array in concert with the PL, AMD-Xilinx
provides the IP Deep-Learning Processor Unit, which is ex-
plained in the following.

B. Deep-Learning Processor Unit

The Deep-Learning Processor Unit is a configurable com-
putation engine targeted for deep neural networks. AMD-
Xilinx offers the DPU for multiple hardware platforms and
with different optimization schemes, i.e., targeting throughput,
latency, or scalability. Once selected, the DPU is deployed on
the PL and the AI-Engines. It hence combines a synthesized
code-block on the FPGA with a series of C++ programs
deployed on the AI-Engines. Both parts together are denoted
as a single IP block. It can be viewed as a microcoded co-
processor with an instruction set optimized for Deep Neural
Network (DNN) operations. Fig. 2 provides a system-model of
the DPU. Various configurations, such as batch-sizes of up to
six using Batch Handlers (BH), choosing 32 or 64 AI-Engines
per BH, as well as running different NNs concurrently using
multiple Compute Units (CU) are offered.

ML computation is split between FPGA and AI-E Array.
Compute-intensive operations, such as MLPs, CNNs, and non-
linear activations are computed on the AI-Engines, whereas
data-handling, such as load and store operations, depth-wise

CPU

AIE Group 1

Mem. Controller

Network-on-Chip

AIE Array Interface

AIE Group 2 AIE Group 3

Instruction
Scheduler

PL

Global
On-Chip

Buffer

Batch Handler 1
2

3

Elt-wisePoolingLoad
Save

AI-Engines

Fig. 2. Block diagram of the DPU architecture (DPUCVDX8G). Adapted
from [12].

convolution, pooling, and element-wise operations, are de-
ployed on the PL. Hence, its theoretic maximum compute
capability depends mainly on the AI-E array and is computed
as [11]

DPU Perf. = fAI-E · 256 ·#AI-E ·#BH ·#CU. (1)

The memory bandwidth available to the DPU depends on
its configuration, specifically, on its number of batch handlers.
It is calculated as

DDR-BW = (512 + 128 + 32 + 128 ·#BH) · fPL bits/s, (2)

where 512, 128, 32, and 128 denote the bus widths for weight,
bias, instruction, and data AXI memory mapped interfaces,
respectively [11].

The native support of ML layers is limited to MLP- and
CNN-like operations, however, custom operations of any kind
can be integrated into the DPU dataflow either in a non-
accelerated manner (PS) or on either PL and/or AI-E Array.

The DPU is benchmarked in three hardware configurations
in this work, shown in Table I. We both analyze the impact
of batch-parallelization, i.e., single-batch vs. multi-batch ex-
ecution, and the trade-off between hardware resources and
compute power, i.e. 32 vs. 64 AI-Engines per BH.

IV. BENCHMARK

This section discusses the benchmark strategy and its re-
sults. First, the challenge of selecting a representative set

TABLE I
BENCHMARKED DPU HARDWARE CONFIGURATIONS

Config Freq.a FPGA AIE Batch Int8 Perf Mem-BW
[MHz] [%] [#] [#] [TOPS] [GB/s]

C32B1 333/1250 6% 32 1 10.24 33.3
C64B1 333/1250 7% 64 1 20.48 33.3
C32B5 333/1250 24% 160 5 51.20 54.6
aFrequency of PL / AI-Engines

TABLE II
SELECTION OF NN VARIATIONS FOR THE BENCHMARK

Property Start Stop Step size
Multi-Layer Perceptron

Num. Input 64 512 64
Num. Neurons 64 512 64
Num. Layers 1 9 2

Convolutional Neural Network
Input Resolution 128x128 512x512 128
Channels 0a 256 64
Kernel-Size 1x1 8x8 2x2
Num. Layers 2 8 2

ResNet50
Input Resolution 512x512b 2048x2048 512
Channels 3 - -
a1 Channel is used as start value.
bResolution 32x32 is additionally provided.

of NN architectures that represent the current landscape of
ML models is discussed. Second, the benchmark process
w.r.t. strategy, performance metrics, measurement methods,
and GPU-based reference platform is elaborated. Afterwards,
the results are presented and a first conclusion is taken from
a high-level perspective.

A. Selection of Representative NN Architectures

The goal of this benchmark is to provide transparency for
key performance metrics of NN execution on the Versal plat-
form using the DPU. Choosing a suitable set of representative
NN architectures that allow to infer predictions for modern
ML models, which resemble a combination of various ML
operations and layers in a single model, is a challenging task.
In this work, we decided to separately focus on single ML
operations in their various configurations. This allows for a
more fundamental understanding of how performance scales
w.r.t. key NN properties, such as num. of layers, input reso-
lution, etc. By covering a sufficiently wide range, this allows
for a more general understanding compared to analyzing very
specific architectures. However, variants of ResNet50 are also
considered to provide a practical reference.

To analyze the DPU’s performance while fully utilizing the
AI-E array, we select the MLP and ”standard” convolutional
layer, as discussed in Subsection III-B. Each layer is followed
by a ReLU activation function, which is considered state-of-
the-art and hardware efficient. Table II summarizes the settings
for generating the benchmarked NN architectures using an
uniform grid-search-wise setting.

The NN models are transformed to their hardware-
accelerated equivalent according to the workflow described in
[6].

B. Benchmark Strategy, Performance Metrics, and Methods

The benchmark strategy utilized in this work targets two
levels of abstraction. On the system-level we analyze the
average model inference time and corresponding power con-
sumption over ten runs. The power consumption is determined
by reading the Versal’s Core and PL Device Rail ’VCCINT’

power sensor, which measures the effective power of the DPU
(PL + AI-E array). These values provide primary information
about the scaling of performance and power consumption
as a function of NN parameters. On a deeper, architectural
level, we concurrently measure the internal DPU execution
time (without python overhead), computational efficiency, and
occupied memory bandwidth for each model. This second-
level analysis, discussed in detail in Section V, enables to
understand the origin of certain hardware-related limitations
and restrictions in achievable performance, ultimately benefit-
ing the user in designing more hardware-suitable models for
optimal performance.

All NN models are analyzed for all DPU configurations
given in Table I. To provide reference performance values, the
NNs’ average inference times are additionally benchmarked
on a consumer-grade NVIDIA Geforce RTX 4070TI GPU
by utilizing TensorFlow’s graph-execution with Just-In-Time
(JIT) compilation.

C. System-Level Benchmark Results

Fig. 3 summarizes the system-level benchmark results for
a selection (all combinations of minimum and maximum
value for all variables) of the NNs analyzed. Multi-Layer
Perceptrons, Convolutional Neural Networks, and ResNets
are vertically arranged in groups. The first column denotes
the NNs’ architectural properties, the second column denotes
avg. python inference time for Versal and GPU, and the
third and forth columns denote avg. DPU runtime and DPU
power consumption for the Versal only, respectively. Different
hardware setups are denoted by colored bars. Blue, red,
and yellow bars denote C32B1, C64B1, and C32B5 DPU
configurations, respectively, whereas black bars denote the
GPU’s performance for single-batch configuration.

Intuitively, the python inference time grows with NN com-
plexity for all models. A significant dynamic range of 0.1 ms -
0.5 ms for MLPs and 0.1 ms - 2.5 secs for CNNs is observed
for the DPU in C32B1 configuration, whereas the GPU’s
overall dynamic range (0.25 ms - 0.4 ms) is much smaller.
Extreme execution times in the order of seconds likely denote
an internal anomaly, e.g., on-chip memory overflow for too
big models. On average, the Versal’s overall inference times
for CNNs are approximately 2 orders of magnitudes slower
than the GPU’s, while they are equal for MLPs. Performance
of multi-batch inference on the Versal shows an interesting
behavior for MLPs and CNNs. By using a batch-size of five
(C32B5 DPU configuration) on the Versal, nearly no python
inference time increase is observed for any MLP variant,
denoting an about 5× higher throughput. This is not the
case for all CNNs, as some execute with nearly the same
inference time, while others reach > 5× higher times, voiding
any possible benefit from processing batches in parallel. The
reason for this phenomenon is the rather limited memory
bandwidth which prevents data-intensive CNNs to utilize the
multi-batch processing capabilities effectively, as discussed in
detail in Section V. Moreover, in C64B1 configuration, while
the MLP’s inference times on average increase by a little,

Python time [ms]

M
ulti-Layer Perceptron

DPU time [ms] Power consumption [W]

Convolutional N
eural N

etw
ork

ResN
et50

N
eu

rons

In
puts

La
ye

rs

Inp
ut-

Re
s.

Cha
nn

els

La
ye

rs

Ke
rne

l

In
put-

Re
s.

Cha
nn

els

C32B1
C64B1

C32B5
N

VID
IA RTX4070 TI

*

*CNN python time for GPU is to be divided by 100

3

Fig. 3. System-Level benchmark results for MLPs, CNNs, and ResNet50s. Metrics: Python inference time (second column), DPU execution time (third
column), power consumption (fourth column). Hardware configurations: DPU C32B1 (blue), C64B1 (red), C32B5 (yellow); GPU (black).

indicating a loss in throughput, the CNN’s inference times on
average decrease, which means they can efficiently exploit the
additional compute resources.

The DPU run-time time (without python overhead) shows a
similar dynamic behavior w.r.t. to model type and complexity,
however, in terms of magnitude it is about 25% and up to
70% smaller than the corresponding python inference times
for MLPs and CNNs, respectively. This indicates a significant
overhead introduced in the Python-DPU interface and hints
a major area of improvement. Possible solutions could be to
utilize the C++-API or to directly control the DPU via its
registers.

Lastly, column four denotes the power consumption of
the DPU in C32B1 configuration. The power consumption
depends heavily on the NN complexity and is approximately
stable at 5.4 W for all MLPs and ranges between 5.2 - 10.0
W for CNNs.

V. ARCHITECTURAL PROFILE

This section provides an in-depth look ”under the hood”
of the DPU’s performance by profiling it on an architectural
level. To illustrate the low-level performance of the DPU on
the Versal we adapt the Roofline Performance Model from
high-performance computing (HPC) [13]. The core idea is that
applications are either computationally bound by the maximal
arithmetic performance of the system, or memory-bandwidth
bound by the maximal speed of the data-transfer interface. This
applies well to NNs, since they can be extremely computation-
ally intensive and have to process large amounts of data. Here,
the Roofline model offers insights on possible performance
bottlenecks.

Fig. 4 summarizes the profiling results in the Roofline
model. The y-axis denotes the performance in Giga operations
per second of the DPU, which is measured by using AMD-
Xilinx’s profiling tools. The x-axis denotes the NN’s opera-
tional intensity in terms of DPU operations per byte transfer
on the DDR memory interface. This metric is computed as the
fraction of the total operations performed for one NN forward
pass and the total amount of bytes transferred between DPU
and the DDR memory within the inference process. We want
to clearly note, that the arithmetic intensity metric used in
this work is not independent of the hardware architecture,
since the DPU has full control over the weight and data
buffering strategy (undisclosed) and, hence, utilization of the
DDR memory interface. Therefore, measuring the arithmetic
intensity using AMD-Xilinx’s profiling tools is inevitable,
since calculating the arithmetic intensity analytically is not
possible.

We track this interface, since we identify it as the memory-
wise weakest element in the system (up to 100 GB/s, ref. to
Subsection III-A). The total bytes measured include everything
necessary w.r.t. to NN execution, i.e., loading input data
from DDR memory to DPU, loading instructions and weights
for each layer, storing and loading the independent outputs
(feature maps) to/from DDR memory, and transferring the final
output result back from DPU to DDR memory.

Fig. 4(a) denotes the location for every NN variant gen-
erated in Subsection IV-A by a scattered point, which is
rectangular and circular for MLPs and CNNs, respectively.
Visual indicators, such as size, background color, border color,
and label (only for CNN), denote the corresponding NN’s
architectural properties, i.e., num. of layers, num. of neurons
for MLP (num. of channels for CNN), num. of inputs for
MLP (input-resolution for CNN), and kernel size (only for
CNNs), in this order. Their relations are visually shown in (c).
All points are bounded by the maximum memory-bandwidth
and the maximum compute capability of the DPU, which are
indicated by a blue (grey) line for the DPU configuration
C32B1 (C32B5). The following two sub-sections are limited
to C32B1, while Sub-section V-C covers C64B1 and C32B5.

A. Performance of Multi-Layer Perceptrons

It can be seen, that the MLPs form a distinct group in
the lower-left corner at operational intensities between 1.5-
2 OPs/byte. Due to this low operational intensity, all MLPs
operate in the memory-bandwidth bound domain. Depending
on their specific architectural properties, MLPs are either
primarily bandwidth limited (points near the blue line), i.e.,
they achieve their maximum theoretic performance possible,
or are subject to additional bottlenecks (points below the blue
line), which are not captured by the Roofline model. The
primary property that decides between those two scenarios
is the number of neurons per layer (blue background). A
high neuron count (∼ 500) leads to a performance near the
theoretic limit, while a low neuron count (< 400) results
in severely degraded performance. The second factor is the
number of layers, with very few layers (2-4) performing worse
than numerous (6+) layers. The number of inputs does not
affect the performance in a noticeable way.

B. Performance of Standard Convolutional Layers

The performance of CNNs behaves in a more dynamic way
compared to MLPs. The operational intensity of the CNNs
benchmarked in this work stretches over 4 orders of magnitude
(∼ 1 to ∼ 104 OPs/byte), hence, they operate in both memory-
bound and compute-bound domains. In general, it can be
observed, that well-performing models (near the blue line)
follow the roof of the Roofline model closely, which indicates
correct assumption of the architecture’s theoretical limits w.r.t.
memory bandwidth and compute performance.

The most important variable is the num. of channels, which
primarily determines whether a model will be situated in
the bandwidth-bound or compute-bound region. It can be
observed, that CNNs with 1 or 64 channels are subject to
extremely bad performance and are not executed efficiently
w.r.t. to their theoretical maximal performances, i.e., they
are far below the blue line. For a higher channel number a
computational performance greater than 2 orders of magnitude
is observed, shifting the models significantly closer to the
system’s memory and computational boundary. Second, the
input resolution plays a non-negligible role in the models’
performance. In both domains it can be observed, that a higher

OPs/byte

CNN
MLP

Kernel
Size

C32B1

C32B5 C64B1

a

b

c

Fig. 4. Roofline model for DPU performance on the Versal, calculated for MLP and CNN NN architectures with various properties. Red area denotes
memory-bandwidth bound region, green area denotes computationally bound region. The blue (grey) line denotes the maximum memory-bandwidth and the
maximum compute capability for the DPU in configuration C32B1 (C32B5). Scattered rectangles and circles denote MLP and CNN architectures, respectively.
Visual indicators for the points, i.e. size, background color, border color, and label (only for CNNs), denote the corresponding NN architecture as explained in
(c). (a) sets the overall performance for both DPU architectures in perspective, while (b) provides a zoomed-version of the crowded computationally-saturated
region of the Roofline model for the C32B1 DPU architecture, which is populated solely by CNNs.

input resolution generally raises the models’ positions in the
Roofline model quite significantly, although, a bigger impact
is seen within the bandwidth-bound domain. The CNNs’
performances are not impacted by the num. of layers.

Fig. 4(b) provides a zoomed-in view on the crowded
computationally-saturated region of the Roofline model for
the C32B1 DPU architecture. Within this region, all models
reach between 6-8 TOPS, utilizing between 60%-80% of the
DPU’s maximal computational performance (10.24 TOPS).
Interestingly, it can be seen, that models who only differ in
their num. of layers reach higher arithmetic intensities for
a lower number of layers, while the absolute computational
performance remains the same. This is somewhat counter
intuitive, as one might think, that the memory-wise overhead
associated with one forward pass would impact the overall
performance less for longer models.

C. Impact of Multi-Batch Inference and Additional AI-Engines

As stated in Subsection III-B, two additional DPU configu-
rations, i.e., one batch handler (BH) with 64 AI-Engines, and
five BHs with 32 AI-Engines per BH are analyzed. We want
to provide a short summary what changes have been observed
for those configurations:

a) Doubling Compute Power (DPU C64B1): For MLPs
no difference at all is observed, since all models are memory-
bound or suffer additional internal bottlenecks, voiding any
possible benefit of additional compute capacity. We refrain
from adding them to Fig. 4 for visibility reasons. CNNs show
little improved performance for operational intensities <∼ 500
OP/s, however, after entering the compute-limited domain,
additional compute capacity leads to similar relative maximal
performance w.r.t. to the maximal limit (20.48 TOPS) as
observed for C32B1 configuration. C64B1 CNNs are denoted
by transparent points in Fig. 4.

b) Multi-Batch Inference (DPU C32B5): For all MLPs
a shift of the operational intensities by about factor five is
observed. This can be intuitively understood by the re-use of
weights for the 5 BHs, resulting in more calculations without
additional significant load on the DDR interface caused by
data. Moreover, the available memory bandwidth is increased
by 64% (ref. to Eq. 2), resulting in an overall higher compute
performance.

CNN performance follows a different scheme. Since the
memory interface is primarily occupied by intermediate data
(feature maps) transfers for CNN inference and not for
weights/biases, no change in operational intensity is observed,
since the additional operations incurred by multi-batch ex-
ecution require equally more data transfer. This also limits
the performance increase for CNN models operating near
the bandwidth limit. This is the reason, why certain CNN
configurations have a significantly higher inference time, while
others show no increase. However, in the compute limited
domain, the performance rises up to a factor of five, exploiting
up to 80% of the DPU’s maximal compute power (51.2 TOPS).

VI. CONCLUSION AND OUTLOOK

In this work we performed an in-depth performance bench-
mark of the Deep-Learning Processor Unit on the Versal AI
Core series platform. We provided a system-level analysis in
terms of inference speed and power consumption for various
MLP and CNN variants and ResNets, and performed an
architectural profiling using AMD-Xilinx’s profiling tools to
understand the observed behavior better. Future work should
consider analysing the so-called ”Custom-Layer” feature w.r.t.
overall performance, which allows to integrate unsupported
operations (e.g., FFT, pre/post-processing, etc.) into the DPU
dataflow for efficient execution.

REFERENCES

[1] 3d Generation Partnership Project, “Release 17,” https://www.3gpp.org/
specifications-technologies/releases/release-17, 2023, [Online; accessed
22-January-2023].

[2] Fraunhofer Institute for Integrated Circuits IIS, “5g satellite integra-
tion,” https://www.iis.fraunhofer.de/en/ff/kom/satkom/sat-5g.html, 2023,
[Online; accessed 22-January-2023].

[3] M. Ghiglione and V. Serra, “Opportunities and challenges of ai
on satellite processing units,” in Proceedings of the 19th ACM
International Conference on Computing Frontiers, ser. CF ’22. New
York, NY, USA: Association for Computing Machinery, 2022, p.
221–224. [Online]. Available: https://doi.org/10.1145/3528416.3530985

[4] Advanced Micro Devices, Inc., “Xqr versal for space 2.0 applications,”
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/
xilinx-xqr-versal-product-brief.pdf, 2022, [Online; accessed 22-
January-2023].

[5] B. Gaide, D. Gaitonde, C. Ravishankar, and T. Bauer, “Xilinx
adaptive compute acceleration platform: Versaltm architecture,” in
Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 84–93. [Online].
Available: https://doi.org/10.1145/3289602.3293906

[6] M. Petry, P. Gest, A. Koch, M. Ghiglione, and M. Werner,
“Accelerated deep-learning inference on fpgas in the space domain,”
in Proceedings of the 20th ACM International Conference on
Computing Frontiers, ser. CF ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 222–228. [Online]. Available:
https://doi.org/10.1145/3587135.3592763

[7] M. Adhiwiyogo, R. D’Souza, S. Leibson, and R. Shak, “White paper:
Pushing ai boundaries with scalable compute-focused fpgas,” pp. 1–6,
2020.

[8] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, and A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” SIGARCH Comput.
Archit. News, vol. 45, no. 2, p. 1–12, jun 2017. [Online]. Available:
https://doi.org/10.1145/3140659.3080246

[9] E. Nurvitadhi, J. Cook, A. Mishra, D. Marr, K. Nealis, P. Colangelo,
A. Ling, D. Capalija, U. Aydonat, S. Shumarayev, and A. Dasu,
“In-package domain-specific asics for intel® stratix® 10 fpgas: A case
study of accelerating deep learning using tensortile asic(abstract only),”
in Proceedings of the 2018 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 287. [Online].
Available: https://doi.org/10.1145/3174243.3174966

[10] AMD-Xilinx, “Versal: The first adaptive compute acceleration platform
(acap)(wp505),” https://docs.xilinx.com/v/u/en-US/wp505-versal-acap,
[Online; accessed 05-July-2023].

[11] AMD-Xilinx Inc., “Dpucvdx8g for versal acaps product guide (pg389),”
2023, [Online; accessed 21-August-2023].

[12] AMD Xilinx, “Vitis ai user guide (ug1414),” https://docs.xilinx.com/
r/en-US/ug1414-vitis-ai/Vitis-AI-Overview, [Online; accessed 12-July-
2023].

[13] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun.
ACM, vol. 52, no. 4, p. 65–76, apr 2009. [Online]. Available:
https://doi.org/10.1145/1498765.1498785

https://www.3gpp.org/specifications-technologies/releases/release-17
https://www.3gpp.org/specifications-technologies/releases/release-17
https://www.iis.fraunhofer.de/en/ff/kom/satkom/sat-5g.html
https://doi.org/10.1145/3528416.3530985
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/xilinx-xqr-versal-product-brief.pdf
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/xilinx-xqr-versal-product-brief.pdf
https://doi.org/10.1145/3289602.3293906
https://doi.org/10.1145/3587135.3592763
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3174243.3174966
https://docs.xilinx.com/v/u/en-US/wp505-versal-acap
https://docs.xilinx.com/r/en-US/ug1414-vitis-ai/Vitis-AI-Overview
https://docs.xilinx.com/r/en-US/ug1414-vitis-ai/Vitis-AI-Overview
https://doi.org/10.1145/1498765.1498785

	Introduction
	State-of-the-Art AI Accelerators
	Versal Platform for DL inference
	AI-Engine Array
	Deep-Learning Processor Unit

	Benchmark
	Selection of Representative NN Architectures
	Benchmark Strategy, Performance Metrics, and Methods
	System-Level Benchmark Results

	Architectural Profile
	Performance of Multi-Layer Perceptrons
	Performance of Standard Convolutional Layers
	Impact of Multi-Batch Inference and Additional AI-Engines

	Conclusion and Outlook
	References

