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ABSTRACT
The ACM SIGSPATIAL Cup 2023 proposed the challenge to identify
and map supraglacial lakes in Greenland in satellite imagery. The
peculiarities of supraglacial lakes pose a hard problem for semantic
segmentation and object detection tasks because the definition of a
lake is ill-fitted to the inner workings of such approaches. For ex-
ample, lakes are often covered by ice and snow and narrow streams
can connect distinct lakes, which is not directly translatable to the
semantic segmentation of water. It is also not well-posed for object
detection, especially the identity relation - what is a lake, what is not
(yet) a lake, and what are two lakes is challenging. In this context,
we worked on adapting semantic segmentation using the Segment
Anything Model and instance segmentation using Mask R-CNN to
the setting. The latter ended up superior in our own evaluation and
even got ranked second among all participants. We are proud that
our approach has led to competitive performance. The source code
is available from https://github.com/tum-bgd/GISCup23.

CCS CONCEPTS
• Computing methodologies→ Image segmentation; • Infor-
mation systems→ Geographic information systems.
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1 INTRODUCTION
Climate change in recent years has led to increasing ice sheet melt-
ing rates all over the earth [14, 15]. Accumulated snow on the
Greenland ice sheet melts into supraglacial lakes every summer.
These lakes form earlier and at higher elevations than ever before,
thus are an essential aspect of climate research [1, 3]. However, a
quantitative study of all these effects requires manual annotation
and image analysis, which does not scale to large spatial regions.
Considering that such lakes are very small compared with the size
of the Greenland ice sheet, it might be unable to uncover large-scale
dynamics.

The ACM SIGSPATIAL Cup 20231 asked for methods to automat-
ically map such supraglacial lakes on satellite imagery. Challenge
participants were given access to preprocessed imagery of four
dates containing only limited spectral information covering the vis-
ible colors red, green, and blue and to corresponding hand-drawn
annotations on parts of these images. It remains open whether the
interest of the domain scientist is more towards object detection
(e.g., identifying lakes as objects) or lake segmentation (e.g., finding
out on a selected spatial scale which pixels belong to a supraglacial
lake).

Generating accurate annotations of supraglacial lakes in this
dataset is hardly as trivial as solving the semantic segmentation
problem of "water or not" [9]. This is because lakes can be partly
covered by ice and snow. The challenge further integrates this
vagueness by a set of rules on the lakes: lakes should be contiguous,
simple polygons of sufficient size; lakes can contain floating ice;
and finally, lakes connected by narrow streams should remain two
different lakes. In addition, the evaluation measure is a domain-
specific construction in which smaller and larger polygons are
accepted in quite a wide range. In this context, we investigate
1https://sigspatial2023.sigspatial.org/giscup/, last accessed Oct. 18, 2023
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Figure 1: The two main methods explored - SAM (top) and MaskRCNN (bottom).

two approaches, out of which we only submit a single one to the
challenge: we apply an instance segmentation model (e.g., object
detection followed by binary segmentation) based on Mask R-CNN
[5] and a semantic segmentation model based on the Segment
Anything Model (SAM) [8] followed by a topological integration
strategy to solve the challenge.

The remainder of the paper is structured as follows: Section 2
shortly reviews the baseline methods selected for this challenge.
Section 3, shortly describes the dataset and some observations.
Section 4 explains the experimental procedure and results for two
methods and gives some evaluation results on the publicly available
fragment of the dataset. Section 6 concludes the paper.

2 SELECTED METHODS
The continent-widemapping of meltwater systems is non-economic
with land-based approaches due to the region’s high variability,
large area, and difficult reachability. Hence, multiple attempts to
use satellite data have been reported in the literature [2, 4, 11, 16].
Concerning deep learning, one approach is image segmentation
based on U-Net [3]. However, recent advances in semantic seg-
mentation, most notably foundation models such as SAM [8] or
advanced region proposal based networks like Mask R-CNN [5]
have seemingly not been adapted to this scenario yet. This paper
explores the latter two architectures and finds quite interesting
baseline behavior before tuning the models.

2.1 Mask R-CNN: A Region-Based Segmentation
Model

The Mask R-CNN model can be considered an extension to the
Faster R-CNN model [5]. In such models, an image is encoded
into feature maps, which are then fed through a region proposal

network (RPN) [13] to find areas that likely contain an object, as
shown in 1. The result of the region proposal and the image features
are combined to predict bounding boxes of objects in the image,
including their class labels with confidence scores and a binary
segmentation of their footprint.

The model is trained on a dataset containing object outlines
as bounding boxes and segmentation masks inside. Furthermore,
the visual feature extraction can be pre-trained on large datasets
such as ImageNet. In this challenge, we utilized the individual
lake polygons, computed their axis-aligned bounding boxes, and
rasterized a mask from the polygons to fine-tune a Mask R-CNN.

2.2 Segment Anything: A Foundation Model for
Segmentation

SAM, introduced in 2023, poses a foundation model pre-trained
on the one million images SA-1B dataset. It claims to perform
promising in few and single shot learning of instance segmentation
tasks [8]. As shown in Figure 1, the model features an autoencoder
architecture with two parts. One part is a two-fold encoder, which
a) transforms the input visuals to a one-dimensional embedding
and b) offers the possibility for prompt encoding. That means the
user can mark special points of interest with additionally supplied
points, bounding boxes, or descriptive texts. The other part is a
mask decoder that translates the image and prompt embeddings to
binary masks with a confidence score.

3 DATASET AND OBSERVATIONS
The ACM SIGSPATIAL Cup dataset contains four multi-part satel-
lite images covering six regions of the Greenland ice sheet to-
gether with a geo-package of manually labeled polygons identifying
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Figure 2: Examples of Supraglacial Lake Mapping Results. (a)-(d) are mapping results based on multi-temporal Sentinel-2
Imagery from 2019-06-03, 2019-06-19, 2019-07-31, 2019-08-25, respectively.

supraglacial lakes2. It has to be noted that labels were only pro-
vided for half of the image region, while the organizers of ACM
SIGSPATIAL Cup kept the other half for the challenge evaluation.

Initial visual inspection of the labels indicated some inconsis-
tencies, probably resulting from human bias. Concretely, this may
originate from the question to which extent snow-covered lakes
should be included, which lakes to consider separately, and whether
lakes can be treated as a stream or too small and thus should not be
included. This poses an additional challenge for the algorithms as
they must fit the domain and labeling behavior to achieve correct
results.

4 METHOD SELECTION AND TUNING
Since the ACM SIGSPATIAL Cup challenge mimics an instance seg-
mentation challenge, two fundamental approaches, namely SAM
and Mask R-CNN, were chosen for further evaluation. These two
algorithms pose different state-of-the-art approaches to image seg-
mentation. SAM features a large training basis and a lot of trainable
weights, and Mask R-CNN includes a region attention-based archi-
tecture that helps to not only predict labels for single pixels but
also make sense of larger areas.

As a first step, we apply the following preprocessing beforemodel
fine-tuning. The provided satellite images are cut into 1024 × 1024
pixel tiles with a step size of 512. Tiles containing more than 50%
blank pixels are excluded, as are tiles that are unlikely to contain
lakes (e.g., coast, snowy inland, etc.). The latter is achieved by
filtering on the ratio of blue colors. Different thresholds were used
for the train and test set. Like this, we only keep tiles with at least
105 blue pixels for inference. Due to the posing of the challenge of
the ACM SIGSPATIAL Cup, no additional split is applied on the
train and test data, as the trained algorithm should leverage the
whole labeled dataset’s knowledge.

2https://sigspatial2023.sigspatial.org/giscup/download.html, last accessed Oct. 16, 2023

4.1 Mask R-CNN
Our implementation utilizes a backbone based on ResNet-101 [6]
and Feature Pyramid Network [10] to extract latent feature maps of
tiles as input for RPN and mask estimations. Pre-trained parameters
provided by the detectron2 library [18] are adopted for fine-tuning
using preprocessed supraglacial lake data. Figure 2 shows several
estimation results on tiles. The fine-tuning procedure of Mask R-
CNN is seemingly promising, as lakes primarily covered by snow
and ice could still be segmented correctly. Finally, a series of post-
processing steps w.r.t. holes in lakes, sizes, and narrow streams are
applied to the Mask R-CNN estimation to generate the final result.

4.2 Segment Anything
The model weights of the SAM encoder were taken from the trans-
formers python library [17]. At the same time, the decoder was
fine-tuned using an Adam optimizer [7] and mean squared error
loss, all implemented using PyTorch [12]. After fine-tuning SAM,
the initial results without prompt encoding were promising, as
shown in Figure 3. The concepts of the lakes were understood, and
a large part of the lake regions was labeled correctly.

However, the main issue with this approach is the pixel-wise
prediction resulting in fragmented segments, as highlighted in the
middle image of Figure 3. Such over-segmented patches are consid-
ered independent lakes instead of being treated as a single big lake.
While this is correct to the human eye, the evaluationmethodwould
render it a failure. Indeed, not a single patch comes close to cover-
ing about half of the ground truth area, thus resulting in multiple
false positives and not a single true positive. A possible explanation
for these results is the difference in the data pre-processing com-
pared to that adopted for Mask R-CNN. Unlike for Mask R-CNN,
every tile generated from the GeoTIFFs is used to train SAM. This
means that the color distribution is heavily skewed towards white
pixels, which could explain the overfitting of SAM to the white
pixels. An idea to mitigate this issue is to use the probability maps
for additional post-processing according to the idea depicted in
the right picture of Figure 3. Instead of relying on a single global

https://sigspatial2023.sigspatial.org/giscup/download.html
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Figure 3: The input tile with three lakes (left), SAM-generated results (yellow), and the ground-truth polygons (blue)(middle),
the idea of a probability map-based approach for improved contiguous areas (right).

probability threshold to generate the masks (yellow), a first lower
threshold is used to obtain contiguous areas (green), and a higher
second threshold (yellow) is applied to filter out segments that do
not contain any high pixel probabilities. The resulting segments
are anticipated to reflect superior overall confidence in a lake.

5 VALIDATION
A validation region is manually selected from training regions
as a validation dataset. We calculate F1 scores on the validation
set of two approaches using a similar method described by the
ACM SIGSPATIAL Cup organizers. The Mask R-CNN solution has
ultimately been selected for submission because it outperforms the
SAM-based solution. Possible reasons for SAM, as a foundation
model, not providing better performance in this task include a)
Reasonable and effective fine-tuning is non-trivial as SAM is of
large scale; b) pixel-wise estimation of SAM is hardly suitable for
this task.

6 CONCLUSION
This paper investigates two approaches to the ACM SIGSPATIAL
Cup 2023 challenge of supraglacial lake mapping on the Green-
land ice sheet: Mask R-CNN for instance segmentation and SAM
for semantic segmentation. These two models are fine-tuned with
the given dataset. The Mask R-CNN solution is finally selected for
submission as it obtains better results than SAM and excels in pre-
dicting continuous patches compared to individual pixel predictions.
This resulted in an F1-score of 0.699 on the test set.
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