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Abstract. Point cloud data acquired via laser scanning or stereo match-
ing of photogrammetry imagery has become an emerging and vital data
source in an increasing research and application field. However, point
cloud processing can be highly challenging due to an ever-increasing
amount of points and the demand for handling the data in near real-time.
In this paper, we propose an efficient in-memory point cloud processing
solution and implementation demonstrating that the inherent technical
identity of the memory location of a point (e.g., a memory pointer) is
both sufficient and elegant to avoid gridding as long as the point cloud
fits into the main memory of the computing system. We evaluate the per-
formance and scalability of the system on three benchmark point cloud
datasets (e.g., ETH 3D Point Cloud Dataset, Oakland 3D Point Cloud
Dataset, and Kijkduin 4D Point Cloud Dataset) w.r.t different point
cloud query patterns like k nearest neighbors, eigenvalue-based geomet-
ric feature extraction, and spatio-temporal filtering. Preliminary experi-
ments show very promising results in facilitating faster and more efficient
point cloud processing in many potential aspects. We hope the insights
shared in the paper will substantially impact broader point cloud pro-
cessing research as the approach helps to avoid memory amplifications.

Keywords: 3D Point Cloud, In-Memory Processing, Spatio-temporal,
Nearest Neighbor

1 Introduction

Point clouds significantly differ from other geospatial data in terms of their
computational nature rendering efficient processing of point clouds in tradi-
tional geospatial infrastructures such as relational database management sys-
tems (RDBMS) or distributed key-value stores complex [9, 20, 23]. The reason
is rooted in the imbalance of data and metadata when a huge number of com-
parably small objects is to be organized. In relational databases, for example,
a natural mapping would let each point occupy a row in a table inducing at



2 Teuscher et al.

least a primary key on top of the points. Otherwise, relational mapping of at-
tributes would not be easily possible. For big data systems, key-value patterns
dominate the organization of processing in line with MapReduce [8, 19] as well
as the theory of (almost) infinitely scaling systems. In both cases, managing the
identities (primary keys in databases, keys in a key-value system) is similarly
complex to manage the data itself (e.g., points represented as tuples of floating
point values).

One proposal often seen in this context is spatial gridding or voxelization.
If we would go ahead and cut the point cloud into grid cells, we can organize
the data – both in distributed key-value stores or in relational data management
systems – in terms of these blocks or 3D tiles. However, this implies that queries
are first defined only up to these artificial data boundaries and refinement steps
are needed if, for example, a query’s data demand extends beyond the current
3D tile.

Furthermore, this approach has limitations when it comes to varying point
densities, which is, however, a very common aspect for terrestrial point clouds
where density degrades with the distance from the sensor to the object and
objects (after, for example, ground removal) are scattered in space. For focal
point cloud analysis (e.g., point cloud analysis where a bound on the distance
of relevant other points is given), this has been done by extending the grid to a
grid overlapping neighbors [4].

The challenge of three-dimensional point cloud data and their volumes is
amplified when the time dimension is added through repeated point cloud ac-
quisitions. Neighborhood queries are then extended into the temporal domain
[1, 18], for example, for spatiotemporal point cloud filtering.

In this paper, we propose and demonstrate that the inherent technical iden-
tity of the memory location of a point (e.g., a memory pointer) is both sufficient
and elegant to avoid gridding as long as the point cloud fits into the main mem-
ory of the computing system. With modern servers with commonly more than
1TB of main memory, this requirement is, however, not a severe limitation for
many use cases. We demonstrate an open-source implementation of complex
point cloud queries following this approach and give performance insights on
selected queries. We test the feasibility and performance of these queries on
multiple benchmark 3D point cloud datasets and share insights into a future
deployment for high-performance computing (HPC) based point cloud analysis.

The remainder of the paper is structured as follows: The next Section 2 re-
views related work on point cloud data management and point cloud processing.
In Section 3, we derive an architecture for scalable point cloud data management
in the Python environment. In Section 4, we classify various data modalities and
common query patterns in order to derive an architecture for a point cloud pro-
cessing engine. In Section 5, we evaluate scalability and performance on a variety
of datasets. Section 6 comments on future potential directions and Section 7 con-
cludes the paper.
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2 Related Work

Point cloud data (containing x,y,z information) can be acquired via laser scan-
ning and stereo matching of photogrammetry imagery, and has become an emerg-
ing and vital data in increasing aspects of real-world applications, ranging from
forestry investigation [9, 24], 3D city modeling [15, 35], precision agriculture [32],
to autonomous drones/cars [36]. Especially, point cloud acquisition using the
Light Detection And Ranging (LiDAR) method has been investigated in diverse
levels of scale and accuracy, from satellite-based (e.g., the Geoscience Laser Al-
timeter System (GLAS) on ICESat [38]), regional-scale Airborne Laser Scanning
(ALS), to fine-grained Terrestrial Laser Scanning (TLS). The emerging avail-
ability of such sensors and data acquisition techniques resulted in a continuing
growth in the amount of point cloud data, which poses great challenges for ef-
ficient data storing, processing, and management to the conventional spatial
computing algorithms designed for 3D point data.

Point cloud processing is a highly challenging task due to an increasing point
rate of available LiDAR scanners and the demand for handling the data in near
real-time. The processing mainly involves registration to existing point clouds
with the ICP [2], RANSAC [28] algorithms and segmentation tasks [26, 27]. Both
purposes require features that are computed on images [6] and point clouds [5]
directly. Additionally, tasks are often solved with Deep Learning approaches [7,
13, 37]. Specifically, geometric features based on the mean, variance, number of
points, density, and normal vectors [16] are used to describe local properties.
Eigen-based features [3] have gained interest for multiple years since they offer
a higher-level specification of the surroundings. All features computed from the
local neighborhood increase the information content of the respective environ-
ment. Therefore, using robust and unique features are utilized for an unambigu-
ous matching [30], which is needed to identify corresponding regions.

Computing meaningful features in local neighborhoods is often a challenging
piece of work. Structuring a point cloud with an octree [10, 17] is a common
approach used to describe point surroundings. Therein, respective tree leaf nodes
summarise the information content of all points within its node boundaries of a
pre-defined size. However, points lying close to the border of adjacent leaf nodes
will not contribute to a high-level feature at the same time. An alternative is
shown in [14] with building a graph structure to compute a triangulation to find
line and edge patterns. Creating a graph enables a faster and more flexible search
in a point neighborhood of an unsorted point cloud. Furthermore, using graphs
is applicable in point cloud deep learning approaches [11, 33] as well.

In summary, quite challenging algorithms in terms of very large loops and
many neighborhood retrievals are commonly needed to process point clouds.

3 Architecture

The point cloud query engine is designed following a few modern programming
paradigms especially related to big geospatial data management and differs in
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Fig. 1: Generic Class Architecture

its architecture from other approaches quite a bit. In this section, we highlight
architectural choices, how they affect the performance of the system and give
hints on future extensions and the path forward for this system.

3.1 Computational Infrastructure

The first and most important decision is to choose a generic programming plat-
form that provides us with a good blend of performance, portability, usability,
existing peer-reviewed libraries for geometry and linear algebra, flexibility, sim-
ple parallel programming features, and excellent Python interfacing. With these
attributes, the choice for the core language has been made to be modern C++ as
it provides us with type-generic programming, excellent OGC geometry imple-
mentations using boost::geometry, fast and powerful linear algebra using Eigen3,
and annotation-based parallel programming in a shared-memory-parallel setting
(SMP) based on OpenMP.

While not yet implemented, the choice of standard C++ containers through-
out the implementation facilitates the use of distributed versions of these con-
tainers as well, such as provided by the DASH library for partitioned global
address space model of computing, where a global address space across a su-
percomputer is simulated [12]. In this way, the library might work across large
supercomputers coordinated using the Message Passing Interface (MPI).

All functionality has been implemented as a single C++ header file relating
only to the boost and Eigen3 libraries. The implementation itself is almost fully
generic as depicted in Figure 1.

The main pointcloud class is implemented for all possible numeric types and
all dimensions in the same code base. Template metaprogramming is used to
implement functions for different dimensionalities, while the system is flexible
enough to partially specialize certain dimensions. For example, a spatiotempo-
ral algorithm can only be run on point clouds with at least four dimensions.
Of course, such functions cannot be implemented as member functions of the
generic PointCloud class, as any attempt to access the fourth coordinate in a 3D
instantiation of a pointcloud will lead to a compilation error. But why do we go
this way, if it is limited in this way? The reason is that in contrast to most other
libraries, the type and dimension of the point cloud are constant at compile time
and all loops or branches based on dimension (e.g., a loop going over the x,y,z
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coordinate in a 3D point cloud, but over x,y,z,t in 4D) can be easily unrolled by
the compiler for unprecedented performance gains.

As said, we still want to implement special functions for less generic point
clouds. In order to do so, we use free functions that get references to the point
cloud. As we make sure that we request these functions only in a valid context,
they will happily compile and at the same time be able to apply dimension and
type-based optimizations otherwise not possible in this stage.

3.2 Algorithmic Infrastructure for Geometry and Spatial Indexing

Instead of reinventing the wheel or using non-generic implementations, we rely
on the most modern family of peer-reviewed libraries for scientific computation
in C++. Boost Geometry provides us with a complete and reasonably correct
implementation of almost all OGC simple feature types and operations. It is
generic in dimension and coordinate type in itself and we can forward the type-
specifications with which the point cloud was instantiated with ease.

In addition, the indexing library of boost geometry provides us with a generic
implementation of an R-tree indexing tree and associated query algorithms which
we instantiate with a default R∗ balancing algorithm. This is a good approach
for dynamic insertion of point especially in the case when many nearest neighbor
queries are going to be performed. We initialize the tree using an STR bulk load
algorithm, but in many situations, we will want to stream batches of points
into the index to avoid the need for large contiguous areas of main memory for
holding points while building the index. In this case, the first batch is used to
STR bulk load a tree while subsequent points are inserted using the R∗ approach
of reinserting points on node splits.

This R-tree implementation provides a query interface with an output itera-
tor (e.g., the query is actually a typical tree scan and emits one indexed value
at a time) which we adapt to a C++ function call. The query predicate is built
as a Boolean combination of contains, covered by, covers, disjoint, intersects,
overlaps, within and two special predicates. The first special predicate is the
“satisfies” predicate which can be used to call a custom Boolean predicate dur-
ing tree traversal that decides on whether points qualify for the result set in
a rather arbitrary way and a “nearest” predicate which ensures that only the
k nearest neighbors are retrieved. Note, however, that for performance reasons
the output of the k nearest neighbors is not sorted by distance as in distance
browsing - an aspect to keep in mind when using the system. It is worth noting
that this setup has a huge advantage stemming from functional programming
capabilities of modern C++ : when we implement the function that takes one
result set element after another as a lambda function, we can capture variables
from the calling scope. This can be used to, for example, aggregate the mean of
all results without ever materializing the result set in memory.
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3.3 Algorithmic Infrastructure for Linear Algebra

One of the query patterns we investigated while setting up this system is a quite
classical one: from a given definition of the surroundings of a point, one builds
up a N × 3 matrix M , extracts the corresponding three eigenvalues λ0, λ1, λ2

of the 3 × 3 self-adjoint matrix M t ·M , normalizes them by their sum, orders
them and calculates features including, but not limited to:

linearity = (λ0 − λ1)/λ0

planarity = (λ1 − λ2)/λ0

scattering = λ2/λ0

omnivariance = 3
√
λ0λ1λ2

anisotropy = (λ0 − λ2)/λ0

eigen-entropy = −λ0 log2(λ0)− λ1 log2(λ1)− λ2 log2(λ2)

trace by largest = (λ0 + λ1 + λ2)/λ0

change of curvature = λ2/(λ0 + λ1 + λ2)

In our implementation, the Eigen3 library is used for eigenvalue extraction by
QR decomposition, which could be further optimized by using a direct equation
solution (with some loss in numerical precision) for compile-time constant-sized
matrices. However, we skip such microoptimizations as the system is - at the
moment - memory bound and a wall-clock performance improvement would not
be possible.

3.4 Python Bindings

As Python is one of the most prominent glue languages, our system relies on py-
bind11 to efficiently (i.e., in most cases without copying memory or marshalling
representations) communicate and share data between our library, numpy, and
the user. However, as Python does not provide generic programming support,
we instantiate the leaf nodes in Figure 1 as individual Python classes. For each
of these classes, we first bind specific API calls related to the dimension and
type, followed by binding a generic API that all pointcloud classes share. This
finalizes the solution to the problem that some operations can only be defined
for certain dimensions of point clouds, as we will require those functions only
from the function implementing the 4D Python binding.

3.5 Data Handling

All data in the library is organized as named columns, where the current version
supports exactly one point cloud, and a variable number of named 1D columns
representing the results of computations.

At this moment, the point information is available twice: once in an array,
accessible via index, and once in the R-tree index as the leaf nodes contain
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the actual data. Fortunately, the array can be dropped if wanted, even more, a
pattern of loading a dataset as a sequence of smaller numpy arrays (maybe a
few hundred megabytes of data) always clearing the point cloud data structure
afterward is possible. This has the effect that no large contiguous memory areas
are occupied and the final memory consumption will be the cost of storing the
points in the R-tree plus the size of the small numpy array that is used to provide
the batches to the C++ implementation. A nice consequence is that the point
cloud that you are going to use for queries can be a different one (e.g., a 3D
grid if you are interested in a voxel-like computation). Most queries then loop
over the given cloud, which can be either the original one or another one and
compute features or other computations for each point in this cloud.

4 Data Modalities, Query Patterns and the API

Point clouds have different properties depending on how they are acquired and
preprocessed. As we are providing a general implementation framework that is
suitable for all point clouds, we select representative point cloud benchmark
datasets of different natures for evaluation.

Photogrammetric point clouds are typically very dense 3D point clouds
acquired from cameras in a 3D reconstruction setting where multiple images
from different viewpoints are combined to a 3D point cloud structure.

Laserscanning point clouds show a comparably higher non-uniformity
as many scanners are acquiring images steering the laser ray using a specific
pattern. In addition, the spatial or angular resolution of laser scanners is often
lower while the range and precision outperform photogrammetric methods.

In many cases, the sensor itself is mounted to a mobile platform and thus
generates data along the trajectory of the mobile sensor platform. Methods of the
family of Simultaneous Localization and Mapping (SLAM) use this mobile sen-
sor information to jointly estimate the trajectory of the mobile sensor platform
and a pointcloud representing the environment. While these approaches help to
mitigate single scan weaknesses such as limited resolution and scan patterns,
they introduce their own limitations due to strongly depending on the estimated
pose of the sensor which is often subject to error accumulation through time,
especially from integrating the movement using inertial measurement units.

Lately, neural rendering and especially Neural Radiance Fields (NeRFs) have
been invented to generate a dense voxelized model of the environment from
a limited number of observations. While the output is actually some average
radiance observed for rays crossing a 3D volume, it can naturally be considered
a point cloud by representing the volume with its center point. In a similar
way, PointNeRF [34] directly models neural radiance fields with point clouds
as opposed to vectors and we expect this exciting area of research to provide
another category of point clouds in the future as occlusions can be modelled
much better as opposed to scan-based methods.

Further, point clouds provide a way to represent geometry in a fully local way
such that in some settings people sample point clouds from geometric models,
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including CAD and GIS datasets. Such sampling can reduce the complexity
and generalize the sampled objects’ geometric representations. For example, a
random point on the surface of a mesh is often required in shape similarity
computation [22].

The general sampling nature of point cloud data and the individual samples
being unbounded implies relating and aggregating the samples in order to draw
meaningful information. The attributes of a single sample are almost never of
immediate interest, but rather the neighborhood, which constitutes a segmenta-
tion of objects of interest. Hence range and neighborhood queries are at the core
of point cloud analysis. Even more, given the importance of points contributing
to the description of a neighborhood decreases with its distance to it [29].

Fig. 2: ETH 3D Point Cloud Dataset.

Fig. 3: Oakland 3D Point Cloud Dataset.

In this paper, we consider three 3D point cloud benchmark datasets (as
shown in Figure 2, 3, and 4) of different sizes to evaluate the performance of our
in-memory point cloud processing library w.r.t the time and efficiency of point
cloud query and feature extraction:

ETH 3D Point Cloud Dataset: The first dataset was collected in the main
building (Hauptgebaude) of ETH Zurich [25], where the laser scanner moved
mainly along a straight line in a long hallway. This hallway is located on the
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Fig. 4: Kijkduin 4D Point Cloud Dataset with first three timestamps shown from
bottom to top.

second floor and surrounds the central place, which is then open over several
floors. Herein, the hallway has a curved ceiling and a wall on one side. On
the other side, there are pillars, aches and ramps. Those elements are the main
interest of this dataset. ETH 3D point cloud datasets consist of in total 6,810,063
points.

Oakland 3D Point Cloud Dataset: This classic dataset was collected
using Navlab11 equipped with side-looking SICK LMS laser scanners and used in
push-broom [21]. The dataset was collected around the CMU campus in Oakland,
Pittsburgh, PA, and contains labeled 3D point cloud derived from LiDAR data
collected using a moving platform in an urban environment. Oakland 3D point
cloud dataset contains 1,614,625 points.

Kijkduin 4D Point Cloud Dataset: The third dataset was recorded by
a laser scanner observing one kilometer of coast at hourly intervals for about
six months, in the Kijkduin dune system in the Netherlands [31]. This dataset
includes more than 4,082 consecutive topographic scans of a varying size in
the lower millions of points each, therefore, it can be regarded as a unique 4D
spatiotemporal point cloud dataset in understanding the morphological behavior
of the beach-dune system at hourly to monthly time scales. The total number
of points in the dataset across all individual hourly scans adds up to about 6.6
billion spatiotemporal 4D points.

5 Evaluation

The following section gives hints on the performance and scalability of the system
in typical scenarios. Specifically, we consider three types of point cloud queries:
(1) the extraction of k nearest neighbors; (2) the extraction of eigen features;
(3) spatio-temporal filtering of 4D point clouds. Moreover, we test the perfor-
mance of these queries for smaller datasets on two different computing plat-
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forms, namely a business laptop (with an Intel(R) Core(TM) i7-8565U CPU,
16.0 GB DDR4 2400MHz memory and a 512GB PCIe 3.0 M.2 SSD) and a
gaming PC workstation (with an Intel(R) Core(TM) i9-10900K CPU, 32.0 GB
DDR4 2933MHz memory and 1TB PCIe 3.0 M.2 SSD). The big Kijkduin cloud
is processed on a medium performance AMD-based server (AMD EPYC 7702P
64-Core Processor, 1 TB main memory, 500 TB disk array).

5.1 Extraction of K Nearest Neighbors

As a first query, we consider the raw extraction of k nearest neighbors of any
point and perform simple aggregation in terms of finding the maximum dis-
tance from the query point on two benchmark datasets, namely the Oakland 3D
dataset (with around 1.6 million points) and ETH 3D dataset (with around 6.4
million points). In terms of pseudo-code, the considered algorithm for a param-
eter k is given as follows:

1 for p in points:
2 neighbors = knn(p, k)
3 d = max dist(neighbors,p)

Figure 5 gives the performance of this query for varying datasets and values
for parameter k. As expected, this query has an almost linear scaling behavior
with respect to the size of the point cloud on a single machine, and this is
observed by the straight lines in the figure. The increasing steepness of the
lines is implied by the fact that not only more points are given, but also each
neighborhood selection - despite the neighborhoods having the exact same size
- traverses a deeper tree.

(a) Oakland 3D Dataset (1.6 million points) (b) ETH 3D Dataset (6.7 million points)

Fig. 5: Performance of simple kNN Queries over the whole dataset.
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5.2 Extraction of Geometric Features

Geometric features are computed from a neighborhood. We define the following
neighborhoods as they incur different query patterns: (1) kNN: the neighborhood
consists of the k nearest neighbors; (2) cube: the neighborhood consists of a n-
dimensional cube which might contain infinite coordinates, for example, a 2D
box in 3D would be modeled as (xmin, ymin,−∞) → (xmax, ymax,∞); (3) sphere:
all points that have a 2D or nD-Euclidean distance smaller than a given radius;
(4) cylinder: all points within a cylinder.

(a) Oakland3D 3D Dataset (1.6 million
points)

(b) ETH 3D Dataset (6.7 million points)

Fig. 6: Performance of calculating 10 different eigenvalue-based features over the
whole dataset.

However, due to the nature of the R-tree, the query processing of all of these
neighborhoods is essentially the same: first, we take the minimum bounding rect-
angle (MBR) of the query object (box, cylinder, sphere, etc.) and determine all
points within this box with a tree traversal. During query processing, we eval-
uate the more specific geometry through additional “satisfies” constraints. All
valid points passing all geometry tests are then collected as the relevant neigh-
borhood. This neighborhood is now shifted to the origin either by computing the
centroid of the neighborhood or by directly using the query point that was used
to create the neighborhood. All results are combined into an N × 3 matrix M .
A self-adjoint 3x3 matrix is generated using from M t ·M . As the eigenvalues of
selfadjoint matrices are always real numbers, we can extract them, order them,
and normalize them to sum up to one. The extraction is currently performed
with a QR composition leading to good numerical stability, but faster algorithms
would be available for 3x3 self-adjoint matrices. However, as we will see, the al-
gorithms are not compute-bound such that this optimization would not pay off
in terms of wall-clock time (but may save energy or provide more compute time
in different scenarios).
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These eigenvalues are then used together with the various derived geometry
features from Section 3.3 to compute ten features for each point of the point
cloud. As the performance evaluation in Figure 6 shows, computing these features
only adds a small overhead compared to bare kNN queries in Figure 5.

Table 1 shows the detailed comparison of different query times of our pro-
posed in-memory point cloud processing library on two different computing plat-
forms in order to better understand the efficiency and scalability of the system.
Herein, we compare the processing time (in second) of mainly four steps: (1) the
initialization, which refer to a data reading operation; (2) the indexing, which
create the R-tree for the whole point clouds; (3) the extraction of k nearest
neighbors with k=25; (4) the extraction of ten eigen features based on k nearest
neighbor results. One can easily identify two key findings from this comparison:
first, a general trend of fast and efficient in-memory point cloud processing can
be observed across different datasets and computing platforms; second, though
the extraction of eigen features is still the most time-consuming operations, this
becomes much more affordable and with even incremental addition times in a
workstation. Note that the laptop was running a Microsoft Windows operat-
ing system to model a typical geoscientists mobile computing device while the
workstation was running Linux.

Oakland 3D (1.6M pts.) ETH 3D (6.2M pts.)
Query Time(s) Laptop Workstation Laptop Workstation

Initialization 0.094 0.041 0.525 0.219
Indexing 0.483 0.226 3.327 1.174
kNN radius 3.137 0.646 30.458 3.511
Eigenfeatures 10.296 1.093 84.769 5.882

Table 1: Performance of point clouds queries with two benchmark datasets on
different computing platforms (i.e., a business laptop running Microsoft Windows
and a gaming PC running Linux).

5.3 Spatio-temporal Filtering

The third query pattern is about spatio-temporal filtering. Especially in long-
term observations, noise and small perturbations to the observed geometry shall
be differentiated from relevant signals representing true change of the geometry.

We implement a special query designed for a spatio-temporal point clouds
that does compute for each point of a query point cloud the average Z coordinate
of a space-time cylinder with a given spatial radius, unbounded spatial height,
and a configurable time window. In this way, a very massive point cloud is
analyzed locally in space and time using a query grid of points of interest for
which this value shall be computed. This query is also used to highlight the
simplicity of extending our framework by experts from the field not firm in
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modern C++. Therefore, we discuss the function doing the computation right
here:

1 namespace bg = boost::geometry;
2 template<typename pointcloud>
3 void boxfilter 4d(pointcloud &pcl, std::string prefix,
4 double radius, double time radius) {
5 pcl.named attributes[prefix+” boxfilter4d”] = std::vector<double>(pcl.cloud.size

↪→ ());
6 auto &a = pcl.named attributes[prefix + ” boxfilter4d”];
7 auto & cloud = pcl.cloud;
8 #pragma omp parallel for
9 for (size t i=0; i< cloud.size(); i++) {

10 typename pointcloud::point type minPoint, maxPoint;
11 bg::set<0>(minPoint, bg::get<0> (cloud[i]) − radius);
12 bg::set<1>(minPoint, bg::get<1> (cloud[i]) − radius);
13 bg::set<2>(minPoint, −std::numeric limits<double>::infinity());
14 bg::set<3>(minPoint, bg::get<3> (cloud[i]) − time radius);
15 bg::set<0>(maxPoint, bg::get<0> (cloud[i]) + radius);
16 bg::set<1>(maxPoint, bg::get<1> (cloud[i]) + radius);
17 bg::set<2>(maxPoint, std::numeric limits<double>::infinity());
18 bg::set<3>(maxPoint, bg::get<3> (cloud[i]) + time radius);
19
20 typename pointcloud::box type query box(minPoint,maxPoint);
21 double sum=0, N=0;
22 pcl.rt.query(bgi::intersects(query box), boost::make function output iterator

↪→ ([&](typename pointcloud::value type const& v) {
23 N++;
24 sum += bg::get<2>(v.first.min corner()); // z coordinate
25 }));
26 double mean = sum/N;
27 a[i] = mean;
28 }
29 }

This listing shows how easy it can be for a domain scientist to implement
their own computational kernels over the point cloud. The infrastructure hides
all Python interfacing, and the generic nature allows the implementation of a
function that can be immediately used with, for example, float or double values
for coordinates. References are used to make shortcuts to the cloud itself and
to the output attribute vector (lines 5-7). Then, parallel processing is required
with a parallel for loop based on OpenMP. The body itself prepares a query
box with both finite and infinite coordinates (lines 11-21). Then, accumulators
(in each thread of parallel execution) are initialized as double variables N and
sum (line 22). Then, we increment N (line 24) and accumulate the Z coordinate
(the second coordinate) out of the R-tree box representing this point in line 25.
Note, how handy the capture of lambdas has become: within a foreign query
infrastructure given by the R-tree, we can write to local variables N and sum.
As a last step in each loop, we store the computed mean value of the attributes
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at this location. Hence, the coordinate point cloud[i] and the named attribute
contain our results. Note that the estimation of the mean in this way is not
optimal from a numerical perspective and can be replaced with an incremental
form, but we aim for simplicity in this example.

Running the prepared query over the whole point cloud is not reasonable
as spatiotemporal filtering is especially useful for standardizing geometry and
reducing the amount of data. Therefore, we exploit the following design facts: (1)
point cloud data is implicitly inside the R-tree including row number information
to the original dataset when needed and (2) the point cloud can be overwritten
with a different cloud.

For this approach, therefore, we create a spatiotemporal grid with 2D coor-
dinates and a time coordinate and estimate the Z value of a 4D point cloud from
the filtering result.

The query grid covers a bit more than the spatial region of the point cloud
generated by a permanent laser scanner (PLS) station at the Kijkduin beach sys-
tem in the Netherlands. For each timestep, this query point cloud contains 6.6
million points such that a query with 10 timesteps evaluates 66 million neigh-
borhoods. Note that this query grid has been designed to be larger than the
original point cloud to see the behaviour under missing data.

The original dataset [31] contains more than 4,000 timesteps, often spaced
in one hour, taken from the rooftop of a nearby hotel. The total number of valid
points sums up to 6.038 billion 4D points. In order to cope with such a massive
point cloud in an in-memory setting, we used a moderate server that we expect to
be available to most scientists working with permanent laser scanning data. The
Kijkduin data has been put into an HDF5 container with a flat storage layout
to speed up reading through memory mapping. The file contains 5 columns of
data each with 6 billion double values summing up to a raw size of 121 GB.

With a query grid with a 50cm point distance and 10 selected timestamps, we
run a filter with a 50cm radius and 1 week of temporal range as well and average
the Z coordinate and a second query with a 2m spatial range and, again, one
week of temporal range. Due to differences in the spatial extent of the different
query times and our choice of a larger grid, some of these neighborhoods turn out
to be empty generating a Not-a-Number (NaN) value implied by a zero division.
We easily drop those NaN values by slicing in Python.

Parts of the results are visualized in Figure 7. The original measured point
cloud is compared to the spatiotemporally filtered point cloud leading to a change
map as depicted in the Figure. One can clearly see stronger (yellow) changes
between a measured point cloud and the spatiotemporally filtered point cloud.

The overall performance of the query processing for this massive point cloud
has been measured by wallclock time. Reading the dataset took half a minute
(30s, 6 GB/s). This number is based on holding the data in a disk array with
decent hardware and in a single HDF5 container with contiguous dataset layout.
After reading the data, we transfer ownership from numpy to our library instan-
tiating geometry points. This takes another 38s. Note that due to the design
of the system, we could have streamed the points in smaller batches from disk
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(a) Measured Point Cloud (b) Measured Point Cloud

(c) Difference

Fig. 7: The measured point cloud and the smooth result as well as the deviation
map computed from the difference of the spatiotemporally filtered cloud and the
measured cloud.
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to memory avoiding this duplication, but with 1 TB of main memory, it was
an unneeded complication. However, when using a chunked storage layout, of
course, the HDF5 data should be streamed in the chunks that have been used
to organize the file on the disk. The spatial indexing now converts all points
to boxes and organizes them with a sort-tile-recurse strategy. This takes 464s,
about 7 minutes. Afterward, we drop the point cloud data and add our query
point cloud into the library with negligible time cost. The filtering query with
50cm neighborhoods with a time extent of one week and 10 timesteps covering
the whole observation duration then, was filtered to the average Z coordinate in
another 945s, which is 15 minutes. Hence, the whole procedure took 1,478s or less
than 25 minutes. The throughput of the approach in this case is an impressive
number of nearly 45,000 neighborhoods per second.

6 Future Work

With this approach, we have shown that current hardware combined with a
hardware-friendly programming environment like C++ is able to cope with the
scale of modern point clouds without any programmatic handling of the big data
nature. We can treat even the largest point cloud with more than 6 billion points
as a simple in-memory dataset using a numpy array and work on it including
spatial indexing, spatiotemporal filtering, and arbitrary user-defined filters. The
system can be steered from Python in an intuitive and efficient way. However,
successful big point cloud processing is not feasible in Python itself due to the
need for parallelization and excessive loops when looping over all points of the
data.

6.1 Interactive Analysis

Clearly, 25 minutes of work on a medium-performance server is not a problem
for a point cloud acquired with months of measurements. However, we believe
that speeding up the data science cycle for point cloud analysis with interactive
performance of experiments can still speed up the research cycle as well.

Two aspects of future work are planned: First, to build a simple distributed
data infrastructure on top of this paper’s computational infrastructure such that
cloud computing machines or compute clusters commonly available in universi-
ties can be used to further reduce the analysis time.

Second, we want to investigate a view-based computation model such that
the computation is constrained by the requirements of a camera. That is, the
query point cloud is actually generated by view culling of a camera and only
“visible” query points are processed. In this way, we hope to interactively work
across even larger point clouds like the AHN3 point cloud covering the whole of
the Netherlands.
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6.2 Desktop and Web Application

For many point cloud processing tasks, desktop applications are being used and
are quite popular. The desktop application paradigm is important, especially for
field work where an Internet connection is not available and powerful server-scale
compute systems are not commonly used.

At the same time, the community starts collecting, integrating, visualizing
and analyzing an ever-growing amount of spatiotemporal point cloud data. Many
of these point clouds are not compatible with the assumptions made for desktop
applications.

In this context we aim to extend the point cloud infrastructure proposed in
this paper with both: a web-based interface for browser-based access, processing
and visualization of tera- or even petascale point cloud collections and the ability
to use the very same techniques, algorithms, and sketches during development
and fieldwork on a local machine (with significantly smaller datasets, of course).

7 Conclusion

From a technical point of view, the proposed library is built around the Python
buffer protocol which allows the communication of data structures between dif-
ferent Python libraries and the Python core without copying or transforming
data. Thus, a point cloud starts to exist in Python, for example, as a NumPy
array with three columns (3D point cloud) or even 4 columns (4D point clouds
including time). Such a point cloud is communicated to our C++ library in terms
of a memory pointer and some descriptive aspects for efficient slicing support.
In this library, the point cloud is indexed as an R*-tree using the Sort-Tile-
Recurse bulk loading algorithm. The resulting indexing tree consists of a well-
balanced arrangement of possibly overlapping rectangles which is known to be
extraordinarily performant for neighborhood queries such as small range queries
or nearest-neighbor queries. Furthermore, we support additional query predi-
cates of spatial nature like ST Within, their negations, an ordering constraint,
or whether the candidate points satisfy a user-implemented unary predicate.

With such an efficient access structure for neighborhoods of points (both spa-
tial neighborhoods like within 30cm as well as topological neighborhoods like the
ten nearest neighbors or temporal neighborhoods like within 100 seconds), we
implement a fast singular value decomposition optimized for small environments
with not more than a few hundred points. From this singular value decompo-
sition, we can read the three real-valued eigenvalues (for 3D) and extract the
structure tensor features such as linearity, planarity, scattering, omnivariance,
anisotropy, eigenentropy, normalized trace, and change of curvature. The library
is publicly available in Github1.

To summarize, given the fact that there are nearly no overheads between a
point cloud in numpy and processing in our library except for spatial indexing,
we expect that this work will have a strong impact on point cloud processing

1 https://github.com/tum-bgd/pointcloudqueries
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research as the approach helps to avoid typical memory amplifications and scales
to datasets that have been difficult to process before. Moreover, we aim to provide
the 3D research community with a simple, extendable, performant, portable
environment to formulate even complex computing tasks based on a mixture of
OGC geometry, linear algebra, artificial intelligence libraries such as PyTorch
and TensorFlow, and HPC platform for visualization, essentially without data
transformation cost. This paper presents the first step into this direction.
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B.: 4d objects-by-change: Spatiotemporal segmentation of geomorphic surface
change from lidar time series. ISPRS Journal of Photogrammetry and Remote
Sensing 159, 352–363 (2020), https://www.sciencedirect.com/science/article/pii/
S0924271619302850

2. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Schenker, P.S.
(ed.) Sensor Fusion IV: Control Paradigms and Data Structures. vol. 1611, pp.
586 – 606. International Society for Optics and Photonics, SPIE (1992), https:
//doi.org/10.1117/12.57955

3. Blomley, R., Weinmann, M., Leitloff, J., Jutzi, B.: Shape distribution features for
point cloud analysis and a geometric histogram approach on multiple scales. ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
II-3, 9–16 (2014), https://isprs-annals.copernicus.org/articles/II-3/9/2014/

4. Brenner, C.: Scalable estimation of precision maps in a mapreduce framework. In:
Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems. SIGSPACIAL ’16, Association for Computing
Machinery, New York, NY, USA (2016), https://doi.org/10.1145/2996913.2996990

5. Bueno, M., Mart́ınez-Sánchez, J., González-Jorge, H., Lorenzo, H.: Detection of
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