
Graph Neural Networks for Anomaly Detection in Spacecraft

Gamze Naz Kiprit ∗1,3, Andreas Koch1,2, Michael Petry1,2, Martin Werner2

1Telecom and Navigation Processing Germany, Airbus Defence and Space GmbH.
2Professorship Big Geospatial Data Management, Technical University of Munich.

3Department of Electrical Engineering, Technical University of Munich.

Satellites play a crucial role in the global communica-
tions system, while being subjected to the harsh space
environment that often causes component degradation.
Early failure detection is important to ensure that the crit-
ical services they provide are not interrupted. This work
proposes a forecasting-based anomaly detection method,
where a Graph Convolutional Network (GCN) is lever-
aged to extract relevant information from time series. The
proposed anomaly detection model reaches an F-Score of
89% on the open-source SMAP & MSL dataset, which is
the best score achieved on this dataset to the best of the
authors’ knowledge. Furthermore, the proposed model is
deployed on the space-grade AMD-Xilinx Versal AI Core
series and its performance measures as well as occupied
hardware resources are demonstrated.

1 Introduction

Today, numerous activities on Earth depend on satel-
lites, such as radio signals, navigation and, in many
countries, the internet access. These machines must
execute critical tasks with exceptional reliability, even
in the event of a failure. Failure Detection, Isolation
and Recovery (FDIR) is a key strategy to fulfill the pur-
pose of reliability and aims to identify and isolate the
faults as early as possible [1]. The most common ap-
proach to identify anomalies is to detect out-of-limit
(OOL) events. These events are identified by exam-
ining whether the design limits of any sensor, instru-
ment, or subsystem are crossed. As data-driven Ma-
chine Learning (ML) methods advance, identifying
anomalies months before OOL limits are crossed is
becoming possible, as proposed in [2]. The ML-based
anomaly detection methods also allow this process to
run automatically, meaning that the incoming teleme-
try data is continuously processed to detect potential
anomalies. These approaches include Support Vector
Machines (SVMs) [3, 4], Autoencoders [5–7], Recur-
rent Neural Networks (RNNs) [7, 8], Generative Adver-

∗This activity has been funded by DLR within the project Ma-
chine Learning for Telecom Satellites (MaLeTeSa). Corresponding
author. E-Mail: gamzenaz.kiprit@tum.de

sarial Networks (GANs) [9] and many others. Besides
the variety of these architectures, the advanced devel-
opment of hardware enables an easy acceleration of
these models on space-ready hardware.

This work proposes a forecasting-based anomaly de-
tection method using GCNs on the space-grade AMD-
Xilinx Versal AI Core series. The next Section gives a
brief background on Graph Neural Networks (GNNs).
Then, Section 3 introduces the dataset and the target
hardware and presents the proposed method includ-
ing its implementation and deployment. Section 4
shows the achieved results with comparison to other
state-of-the-art works and on-board measurements of
the proposed method. Finally, Section 5 provides con-
cluding remarks and suggestions for future work.

2 Graph Neural Networks

Graphs. Graphs are data structures suitable for
modeling the interactions and relations between ob-
jects. Mathematically, a graph is a tuple G = (V ,E),
where V denotes the list of objects, in this context
nodes or vertices, and E is the list of edges. A graph
can be represented using an Adjacency Matrix A. The
entries of A denote the existence of the edges.

The core concept in GNNs is the message-passing
strategy. During each message passing iteration, each
node in a graph aggregates information from its local
neighborhood in order to update its node embedding
h. The more iterations are performed, the more infor-
mation each node embedding contains from further
nodes in the graph. A message passing iteration is
mathematically expressed as:

h(k)
u = σ

(
W(k)

self h
(k−1)
u +W(k)

neigh

∑
v∈N (u)

h(k−1)
v + bk

)
, (1)

where h(k−1)
u denotes the node embedding of the node

u in the (k − 1)-th iteration and the h(k−1)
v denotes the

node embeddings of the neighbors of the node u in

the (k − 1)-th iteration. The W(k)
self and the W(k)

neigh are
the trainable weight matrices and the b is the bias.

The Graph Convolutional Neural Networks (Con-
vGNNs) are the generalization of the Convolutional
Neural Networks (CNNs) to the graph-structured
data. They aim to capture and encode the structural
information of a graph and allow nodes of the graph
to consider the features of their neighbors. The graph
convolution operation involves applying a convolu-
tion filter to all node features considered.

Graph Convolutional Network. The GCN is a
message-passing based ConvGNN [10]. The basic
GCN layer is defined as follows:

H(k) = σ
(
ÃH(k−1)W(k)

)
, (2)

where k is the iteration number, i.e. layer, W is the
trainable parameter matrix and H is the embedded
graph. In the equation above, Ã denotes the normal-
ized variant of the adjacency matrix with self-loops
and is equal to (D + I)−

1
2 (A + I)(D + I)−

1
2 , where D is

the degree matrix of A.

3 Proposed Approach

The proposed anomaly detection approach consists
of two components: forecasting and non-parametric
thresholding, as seen in Figure 1. The forecasting
component is a Deep Learning (DL) model, which
aims to learn the normal behavior of the time-series
and predicts the next time steps based on l previous
steps. The non-parametric thresholding component
compares the predicted value with the measured real
value and decides whether there is an anomaly or not.

The DL model has three learnable layers: a GCN
layer as the input layer and two dense layers. The in-
put time series are treated as graph nodes in order to
be fed into the GCN layer and an adjacency matrix
is constructed to define the graph connections. Usu-
ally, there is domain-specific knowledge to construct
the graph connections. For instance, in chemistry, the
nodes of a graph can denote the molecules and the
edges are chemical bonds. However, there is not any
specific knowledge for the time series in this work.
Moreover, since each connection of the graph defines
the correlation or interaction between the nodes, dif-
ferent combinations of connections will lead to differ-
ent results. For this reason, edge connections in time
series are treated as hyperparameters. To the best of
the authors’ knowledge, this approach has not been
seen in the literature so far.

In order to limit the hyperparameter space, the fol-
lowing restrictions are introduced:

• The current time steps are only connected to the
future time steps. Therefore, the adjacency ma-
trix is an upper triangular matrix.

• Each time step has a self connection, i.e., the main
diagonal of the adjacency matrix is filled with
ones.

• In order to maintain sequentiality, each time step
is connected to the next. The line above the main
diagonal is also filled with ones.

Thus, the hyperparameter space consists of the entries
of the adjacency matrix that are above the first upper
diagonal and are either 0 or 1. The hyperparameter
exploration is done while training the network with
the goal of maximizing the objective function. The
prediction ŷ of the most optimal configuration found
is then handed to the second component.

In the second component, a threshold ϵ is calculated
dynamically based on the error between the predic-
tion ŷ and the measured real value y. The method
for calculating the threshold is proposed by [8]. All
time steps where the error values are above this se-
lected threshold ϵ, are marked as an anomaly. Based
on the marked anomalies, the metrics True Positive
(TP), False Positive (FP) and False Negative (FN) are
calculated as follows:

• True Positive: One TP is counted, when a
segment of a predicted sequence of anomalies
matches a true labeled sequence. In the event of
several predicted anomaly sequences that match
a true labeled sequence, only one TP is recorded.

• False Negative: One FN is counted, if the predic-
tion is false for a true sequence.

• False Positive: One FP is counted, if the predic-
tion is true for a false sequence.

3.1 Dataset

The proposed method is evaluated on a labeled open-
source anomaly detection dataset published by re-
search scientists at NASA [8]. It consists of raw teleme-
try from two spacecraft: the Soil Moisture Active Pas-
sive (SMAP) satellite and the Mars Curiosity Rover.
The provided original data is multi-variate, with mul-
tiple command channels and one telemetry channel.
However, this work considers only the telemetry chan-
nel. The dataset contains point anomalies and con-
textual anomalies [11] and there are 105 anomaly se-
quences in total, 62 of which are point anomalies and
43 of which are contextual anomalies.

Anomaly Detection Pipeline
Forecasting Component Non-parametric Thresholding Component

time

x

tt-10

Input Time Series

Prediction

Forecasting
Model

(s,1) G
C

N
C

on
v(

F)

(s, F)

Fl
at

te
n(

)

(s x F)
D

en
se

()

D
en

se
(1

)

Prediction y

Ground Truth y

Er
ro

r C
al

cu
la

tio
n

D
yn

am
ic

 T
hr

es
ho

ld
in

g Anomaly

Normal
Behavior

^

t+1

Yes

No

Above
Threshold

Figure 1: Proposed anomaly detection pipeline.

3.2 Implementation

The sliding window approach is used as a preprocess-
ing step for modeling the prediction problem. The
default window size is set to l = 25. The first 24 time
steps of a sequence are used to train the network to
predict the 25th time step. It is important to note
that the training data only consists of the normal be-
havior of the sensor and the test data contains both
anomalous time steps and time steps with normal be-
havior. The proposed network is implemented with
TensorFlow and the training is done on Amazon Web
Services (AWS). The hyperparameter optimization is
done via the Amazon SageMaker Tuner, which applies
a linear regression over all iterations in order to find
an optimal hyperparameter configuration.

3.3 Hardware Deployment

The target hardware is the Versal Adaptive Compute
Acceleration Platform (ACAP) AI Core Series from
AMD-Xilinx, which is a space-ready hybrid compute
platform with four main components: the Processing
System (PS), the Programmable Logic (PL), 400 in-
telligent engines, also called AI engines, and the pro-
grammable Network-on-Chip (NoC) [12].

AMD-Xilinx offers a development environment
called Vitis AI for AI inference on Xilinx edge de-
vices. Specifically, it implements an AI inference for
DL models on a programmable engine called the Deep
Learning Processing Unit (DPU). For the Versal ACAP,
the DPU is to be integrated into the hardware image,
using both PL and AI engine resources, forming a uni-

fied IP block. The DPU is a generic ML inference ac-
celerator and it dynamically loads pre-compiled DL
models at run-time. For deployment, it is necessary to
quantize pre-trained DL models, as the DPU is lim-
ited to quantized 8-bit values. Model quantization
and compilation compatible with the target DPU can
be performed by Vitis AI. The quantization and com-
pilation of the GCN layer is not possible with the Vi-
tis AI toolchain as the GCN layer is not supported
by the DPU. As the GCN layer is the first layer of
the network, executing the GCN layer is considered a
preprocessing step and the trained GCN layer is im-
plemented as a matrix multiplication of the input ma-
trix, the adjacency matrix and the weight matrix of
the layer using the NumPy-Matmul operation on the
CPU. The bias is added to the result.

4 Results

This work considers three performance metrics: pre-
cision, recall and F0.5 score. The reason for using the
F0.5 score is to assign more importance to FPs than
FNs, as it should be avoided to terminate spacecraft
operations by FPs. Table 1 shows the obtained results
and ablation studies in comparison to other state-of-
the-art methods on the same dataset. The first row,
GCN-2Dense, shows the obtained results of the orig-
inal proposed network with two dense layers. It has
a precision of 94%, a recall of 70% and an F0.5 score
of 88%. The network in the second row, GCN-3Dense,
has an additional dense layer and the best precision

with 96% and the best F0.5 score with 89% among all
networks. The third row shows the results of the two
dense layers without the GCN layer. Here, a signifi-
cant performance decrease is observed. Thus, the F0.5
score of the proposed network overcomes the LSTM
Network [8], by 3%, the Channel-Specific LSTM [13]
by 9%, the TadGAN [9] by 34% and StackedPredic-
tor [14] by 1%. Table 2 shows the F0.5 scores of the

Method Precision Recall F-Score

GCN-2Dense 0.94 0.70 0.88
GCN-3Dense 0.96 0.70 0.89

2Dense w/o GCN 0.72 0.74 0.72
LSTM Network [8] 0.87 0.80 0.85

Channel-Specific LSTM [13] 0.79 0.83 0.79
TadGAN [9] 0.51 0.78 0.54

StackedPredictor [14] 0.87 0.89 0.87

Table 1: Performance metrics of different models on the
same dataset. The first three models are developed and im-
plemented as part of this work.

proposed networks after quantization. Both models
show a significant performance loss after quantization.
However, a remarkable portion of the performance
is recovered by applying smoothing to the error se-
quence, eliminating the peaks that occurred due to
quantization. This is shown in the third column of
the table. Both models are deployed on three different

Model
F-Score After
Quantization

F-Score After
Quantization & Smoothing

GCN-2Dense 0.71 0.83
GCN-3Dense 0.78 0.86

Table 2: Performance statistics after quantization.

processors: the CPU, the DPU with batch number one,
i.e., DPU-B1, and the DPU with batch number five, i.e.,
DPU-B5. Figure 2 shows the runtime of the three pro-
cessors with respect to different models with different
sizes. On the x-axis, the proposed models are shown
with gray dotted lines. It can be observed that execut-
ing the small models on the CPU is faster. However,
as the model size increases, both the DPU-B1 and the
DPU-B5 executions become significantly faster than
the CPU. Figure 3 shows the comparison of the energy
consumption per Bit of the processors in relation to
the model size. The energy consumption of the CPU is
extremely low for the smallest models and is the most
efficient, but it drastically rises for the larger models.
Using the DPU-B5 for both proposed models is the
most efficient in terms of energy per Bit.

103 104 105 106 107

Model Size [-]

10 1

100

101

102

103

Ru
nt

im
e

[s
]

GC
N-

2
De

ns
e

GC
N-

3
De

ns
e

CPU
DPU-B1
DPU-B5

Figure 2: Runtime comparison of the three processors with
respect to the model size.

103 104 105

Model Size [-]

0.00

0.05

0.10

0.15

0.20

0.25

0.30
En

er
gy

 [
J /

 B
it

]

GC
N-

2
De

ns
e

GC
N-

3
De

ns
e

CPU
DPU-B1
DPU-B5

Figure 3: Energy consumption per Bit of the processors with
respect to the model size.

5 Discussion

This work proposes a forecasting-based time series
anomaly detection method based on GCNs. The best
node connection combinations for the input graphs to
the GCN are found in the hyperparameter optimiza-
tion process during training. This method allows the
GCN layer to extract the most relevant information.
To the best of authors’ knowledge, the obtained results
are state-of-the-art on the used open-source dataset.
These results support the model’s capability of detect-
ing anomalies in telemetry. However, a further eval-
uation on different datasets is needed to conclusively
prove its ability to generalize. Moreover, future work
may consider integrating the GCN layer on the FPGA.
The authors hope that this work will incentivize the
exploration of GCNs in the space community.

References

1. NASA. Fault-Detection, Fault-Isolation and Recovery (FDIR)
Techniques https://llis.nasa.gov/lesson/839.

2. Andreas, K. et al. On-Board Anomaly Detection on a Flight-
Ready System. https://www.bgd.ed.tum.de/pdf/2023_
ADAP_Andreas.pdf (2023).

3. Wang, Y., Wong, J. & Miner, A. Anomaly intrusion detection
using one class SVM in Proceedings from the Fifth Annual IEEE
SMC Information Assurance Workshop, 2004. (2004), 358–364.

4. Ma, J. & Perkins, S. Time-series novelty detection using one-class
support vector machines in Proceedings of the International Joint
Conference on Neural Networks, 2003. 3 (2003), 1741–1745
vol.3.

5. Sakurada, M. & Yairi, T. Anomaly Detection Using Autoen-
coders with Nonlinear Dimensionality Reduction in Proceedings
of the MLSDA 2014 2nd Workshop on Machine Learning for
Sensory Data Analysis (Association for Computing Machin-
ery, Gold Coast, Australia QLD, Australia, 2014), 4–11. isbn:
9781450331593. https : / / doi . org / 10 . 1145 / 2689746 .
2689747.

6. Xu, H. et al. Unsupervised Anomaly Detection via Variational
Auto-Encoder for Seasonal KPIs in Web Applications in Proceed-
ings of the 2018 World Wide Web Conference on World Wide
Web - WWW ’18 (ACM Press, 2018). http://dx.doi.org/10.
1145/3178876.3185996.

7. Park, D., Hoshi, Y. & Kemp, C. C. A Multimodal Anomaly De-
tector for Robot-Assisted Feeding Using an LSTM-based Varia-
tional Autoencoder 2017. arXiv: 1711.00614 [cs.RO].

8. Hundman, K., Constantinou, V., Laporte, C., Colwell, I.
& Söderström, T. Detecting Spacecraft Anomalies Using
LSTMs and Nonparametric Dynamic Thresholding. CoRR
abs/1802.04431. arXiv: 1802.04431. http://arxiv.org/
abs/1802.04431 (2018).

9. Geiger, A., Liu, D., Alnegheimish, S., Cuesta-Infante, A. &
Veeramachaneni, K. TadGAN: Time Series Anomaly Detec-
tion Using Generative Adversarial Networks 2020. arXiv: 2009.
07769 [cs.LG].

10. Hamilton, W. L. Graph Representation Learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning 14, 1–
159.

11. Chandola, V., Banerjee, A. & Kumar, V. Anomaly Detection:
A Survey. ACM Comput. Surv. 41. issn: 0360-0300. https:
//doi.org/10.1145/1541880.1541882 (July 2009).

12. Xilinx. Versal ACAP System Software Developers Guide https:
//docs.xilinx.com/r/2021.1-English/ug1304-versal-

acap-ssdg/Development-Tools.

13. Baireddy, S. et al. Spacecraft Time-Series Anomaly Detection
Using Transfer Learning in 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW)
(2021), 1951–1960.

14. Li, T. et al. A Stacked Predictor and Dynamic Thresholding Al-
gorithm for Anomaly Detection in Spacecraft in MILCOM 2019
- 2019 IEEE Military Communications Conference (MILCOM)
(2019), 165–170.

https://llis.nasa.gov/lesson/839
https://www.bgd.ed.tum.de/pdf/2023_ADAP_Andreas.pdf
https://www.bgd.ed.tum.de/pdf/2023_ADAP_Andreas.pdf
https://doi.org/10.1145/2689746.2689747
https://doi.org/10.1145/2689746.2689747
http://dx.doi.org/10.1145/3178876.3185996
http://dx.doi.org/10.1145/3178876.3185996
https://arxiv.org/abs/1711.00614
https://arxiv.org/abs/1802.04431
http://arxiv.org/abs/1802.04431
http://arxiv.org/abs/1802.04431
https://arxiv.org/abs/2009.07769
https://arxiv.org/abs/2009.07769
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://docs.xilinx.com/r/2021.1-English/ug1304-versal-acap-ssdg/Development-Tools
https://docs.xilinx.com/r/2021.1-English/ug1304-versal-acap-ssdg/Development-Tools
https://docs.xilinx.com/r/2021.1-English/ug1304-versal-acap-ssdg/Development-Tools

	Introduction
	Graph Neural Networks
	Proposed Approach
	Dataset
	Implementation
	Hardware Deployment

	Results
	Discussion
	References

