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ABSTRACT
Despite the advance of representation learning (RL) of image and
text data, it is a challenging task to obtain a general-purpose rep-
resentation of vector-based spatial data (e.g., point, polyline, and
polygon) that fulfills domain-specific prerequisites in downstream
spatial analysis. Towards filling this gap, we put focus on the first
step of revisiting a classic computational geometry task, namely
the polygon retrieval, with a modern RL approach. In this paper, we
propose a novel representation learning method for polygon data,
namely Random Affine Transformation Features (RATFs). Inspired
by Random Fourier Features, RATFs represent polygons on the
plane into vector embeddings in the high-dimensional space using
the basis of random anchor polygons, allowing us to transform
complex, non-batch-wise computations between polygons such
as Hausdorff distance into simple, batch-wise inner products. Ex-
periments demonstrate that by using a naive 3-layer feed-forward
network, our RATFs-based neural polygon embeddings are able
to retrieve similar polygons from the corpus 100,000 times faster
than computing Hausdorff distances at inferencing and achieve
good retrieval quality. We aim to demonstrate the representational
power of RATFs and leave the design and tuning of more advanced
RATFs-based neural networks for future work.
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1 INTRODUCTION
It is an ultimate goal for almost all learning methods and systems to
represent massive raw data with a standard and unified format, with
which one can largely facilitate the effectiveness and efficiency of
downstream tasks. Researchers use different terminologies for this
process, startingwith feature engineering or feature extraction, now
more often called representation learning (RL). Recently, RL has
emerged [3], as a new paradigm of feature extraction and become
the foundation for performance boosting in solving various AI tasks
such as natural language processing (NLP), computer vision (CV),
and speech recognition. In most cases of representation learning,
text[1, 10], images [5], and audio [8] data are directly fed into
dedicated neural network architecture modules to automatically
learn low-level and high-level representations without the need for
a manual feature engineering step.

However, few works develop such RL techniques for various
types of vector-based spatial data (e.g., points, polylines, polygons,
trajectories, triangulated irregular networks (TINs), 3D LiDAR point
clouds, etc.) without rasterization. The main reasons are twofold:
first, it can be a hotfix for non-spatial people to rely on rasterization,
then treat everything as pixels so that everyone’s life is easier. This
is fully understandable as most people don’t need the precision that
comes with the raw vector spatial data then it does not matter; sec-
ond, it is simply a challenging task to obtain a general-purpose nice
representation of vector data that fulfills domain-specific prereq-
uisite in sophisticated spatial analysis (e.g., geometry correctness,
affine equivariance, and shape sensitivity). Different to text and
image, spatial representation learning (SRL) demonstrates several
unique challenges: 1) the geographic scale problem usually requires
a representation learning model to continuously consider multiple
scales ranging from global scale, continental scale, city scale, and
neighborhood scale, etc; 2) though spatial data are usually stored
in a discretized format, they represent continuous objects or ge-
ometries. This requires representation learning models to learn
continuous vector data representations instead of treating them
as a finite list of coordinates [13]. For example, a polygon is usu-
ally represented as a ring of vertices or several rings (polygons
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with holes or multipolygons), but it actually refers to a continuous
surface.

There are mainly three types of vector data, namely point, poly-
line, and polygon. For point data, classic point pattern analysis is
widely used almost everywhere to obtain statistic insights of spatial
data distribution. For the other two types (polyline and polygon),
they are basically the same thing. The only difference is that a
polyline does not need to be closed while a continuous surface is
bounded by a closed ring. Therefore, it is key in SRL to find a robust
and general-purpose representation of polyline and polygon vector
data, from which all kinds of downstream statistic analysis can
benefit. To narrow down the scope, we put our focus on polygons,
especially the polygon retrieval task. In this context, our aim is to
offer a modern solution to a classic computational geometry task
(i.e., to calculate the similarity of two arbitrary polygons, similar
to [7]) with a dedicated SRL approach. We see this as a first step
toward a general-purpose representation of vector spatial data.

In this paper, we aim to fill this research gap by developing a
novel random affine transformation feature representation learn-
ing approach for fast and efficient polygon vector data retrieval.
The idea is to take the first step forward and show the potential
benefit of a dedicated and native representation learning approach
for vector-based spatial data. Specifically, we focus on learning a
neural polygon embedding model which transforms variable-length
vector polygon data (i.e., sequence of vertex coordinates) into fixed-
length continuous representations. Moreover, we demonstrate that
the simple inner product of such neural polygon embeddings pre-
serves the Hausdorff distance between polygons, enabling fast and
accurate polygon retrieval on large scales.

2 PRELIMINARIES
2.1 Hausdorff Distance
The Hausdorff distance is a common measure used to quantify the
similarity between two geometric shapes. Given a metric space
(𝑀,𝑑), the Hausdorff distance between non-empty subsets 𝑋,𝑌 ⊂
𝑀 is defined as:

𝑑𝐻 (𝑋,𝑌 ) = max

{
sup
𝑥∈𝑋

𝑑 (𝑥,𝑌 ), sup
𝑦∈𝑌

𝑑 (𝑦,𝑋 )
}

where 𝑑 (𝑎, 𝐵) = inf𝑏∈𝐵 𝑑 (𝑎, 𝑏) denotes the distance from a point
𝑎 to a subset 𝐵 ⊂ 𝑀 .

In practice, the Hausdorff distance between two shapes is often
approximated by sampling discrete points from each set. Let 𝑃 =

{𝑝𝑖 }
𝑁𝑝

𝑖=1 ⊂ 𝑋 and 𝑄 = {𝑞 𝑗 }
𝑁𝑞

𝑗=1 ⊂ 𝑌 be point samples from 𝑋 and 𝑌 ,
respectively. The approximate Hausdorff distance between the two
shapes is then computed as:

𝑑𝐻 (𝑋,𝑌 ) ≈ 𝑑𝐻 (𝑃,𝑄) = max
{
max
𝑖

min
𝑗

𝑑 (𝑝𝑖 , 𝑞 𝑗 ),max
𝑗

min
𝑖

𝑑 (𝑞 𝑗 , 𝑝𝑖 )
}

This discrete approximation of the Hausdorff distance is widely
used in computational geometry for shape comparison and analysis.

2.2 Shape Registration
Shape registration seeks to find an appropriate transformation
that best aligns one shape with a reference shape. This process is

crucial for bringing two shapes into the same reference frame or for
quantifying the differences between the same shape observed under
different conditions. Shape registration has broad applications in
areas such as computer vision, computer graphics, and medical
imaging.

For geometric shapes in Euclidean spaces, the transformations
considered are often rigid or affine. A rigid transformation, which
includes rotation and translation, preserves Euclidean distances
and angles. An affine transformation, being more general, further
includes scaling and shearing. It preserves lines and parallelism but
not necessarily distances and angles.

In an 𝑛-dimensional Euclidean space, an affine transformation
can be represented by a matrix 𝑨 ∈ R𝑛×𝑛 and a translation vector
𝒕 ∈ R𝑛 . Given a point set 𝑃 = {𝑝𝑖 }

𝑁𝑝

𝑖=1 ⊂ R𝑛 and a reference point

set 𝑄 = {𝑞 𝑗 }
𝑁𝑞

𝑗=1 ⊂ R𝑛 , the goal of affine registration is to find the
matrix 𝑨 and vector 𝒕 that best align 𝑃 with 𝑄 . This is typically
formulated as the following optimization problem:

min
𝑨,𝒕,{𝑐𝑖 }

𝑁𝑝∑︁
𝑖=1



𝑨𝑝𝑖 + 𝒕 − 𝑞𝑐𝑖 

22 ,
where 𝑐𝑖 denotes the index of the corresponding point in 𝑄 for

each point 𝑝𝑖 in 𝑃 . For a comprehensive review of the state-of-the-
art techniques in point set registration, we refer the reader to a
survey [14].

In general, shape registration in Euclidean space is solved by
first sampling points on the surfaces of the shapes, then tackling
the point set registration problem to compute the optimal transfor-
mation.

2.3 Iterative Closest Point (ICP) method
An important and widely used algorithm for point set registration
is the Iterative Closest Point (ICP) method [4]. ICP solves the rigid
registration problem by iteratively refining the transformation be-
tween two point sets. The method alternates between two main
steps:

(1) Correspondence Step: For each point 𝑝𝑖 in the point set 𝑃 ,
find the closest point 𝑞𝑐𝑖 in the reference point set 𝑄 after
applying the current estimate of the transformation. This is
formulated as:

𝑐𝑖 = argmin
𝑗



𝑹𝑘𝑝𝑖 + 𝒕𝑘 − 𝑞 𝑗 

2 ,
where 𝑹𝑘 and 𝒕𝑘 are the rotation matrix and translation
vector at iteration 𝑘 .

(2) Transformation Update Step: Update the rotation matrix
and translation vector by minimizing the sum of squared
distances between the transformed points and their corre-
spondences:

𝑹𝑘+1, 𝒕𝑘+1 = argmin
𝑹,𝒕

𝑁𝑝∑︁
𝑖=1



𝑹𝑝𝑖 + 𝒕 − 𝑞𝑐𝑖 

22 .
This iterative process continues until convergence, resulting in

the optimal rigid transformation aligning 𝑃 with𝑄 . The ICPmethod
can be extended to handle affine transformations [6, 17], allowing
for scaling and shearing in addition to rotation and translation.
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3 METHOD
The goal of this research is to efficiently evaluate the Hausdorff
distance in the embedding space. Specifically, we wish to find an
encoder 𝐸𝑛𝑐 which embeds a given polygon𝑋 into a 𝑑-dimensional
real-valued embedding 𝑒𝑋 = 𝐸𝑛𝑐 (𝑋 ) = (𝑒1, 𝑒2, · · · 𝑒𝑑 ), and a metric
𝑑𝑒 in the embedding space such that

𝑑𝐻 (𝑋,𝑌 ) ≈ 𝑑𝑒 (𝑒𝑋 , 𝑒𝑌 )
We set 𝑑𝑒 to be the cosine distance, i.e.,

𝑑𝑒 = 1 − ⟨𝑒𝑋 , 𝑒𝑌 ⟩|𝑒𝑋 | |𝑒𝑌 |
because cosine distance is one of the most commonly used met-

rics of embeddings and there are many industry-level optimization
for computing cosine distance in extremely large scales.

Like location encoding [12, 15], we adopt a two-stage encoder
architecture: in the first stage, the polygon 𝑋 is encoded by a non-
parametric algorithm 𝑃𝐸 into a polygon encoding, analogous to
the feature engineering stage in computer vision; in the second
stage, a simple neural network 𝑁𝑁 is used to map the polygon en-
coding non-linearly into a neural polygon embedding. Formally,

𝑒𝑋 = 𝐸𝑛𝑐 (𝑋 ) = 𝑁𝑁 (𝑃𝐸 (𝑋 ))
The usefulness of 𝐸𝑛𝑐 relies heavily on 𝑃𝐸. In this paper, we

propose a novel polygon encoding algorithm based on Random
Affine Transformation Features (RATF). The learned embedding
𝑁𝑁 (𝑃𝐸 (𝑋 )) is a neural implicit representation of polygons [16].

3.1 Random Affine Transformation Features
(RATFs) for Polygon Encoding

Figure 1: Illustration of polygon anchoring by affine trans-
formation. Suppose 𝑋,𝑌, 𝛼 are pairwise affine transformable,
and the affine transformationmatrix from polygon𝑍 to poly-
gon 𝑍

′
is 𝑨𝑍

′

𝑍
. Then 𝑨𝑌

𝑋
is identity if and only if 𝑨𝛼

𝑋
= 𝑨𝛼

𝑌
, i.e,

the equivalence relation between polygons is preserved by
this anchoring process.

The motivation behind Random Affine Transformation Features
is intuitive. Given two polygons 𝑋 and 𝑌 , we are interested in

Figure 2: Illustration of Random Affine Transformation Fea-
tures (RATFs).

computing their similarity. Instead of direct comparison, we can
compare their relative differences to an anchor polygon 𝛼 – i.e.,
compare whether the two polygons are identically similar to 𝛼 .

Specifically, let the affine transformation from𝑋 to𝑌 be𝑨𝑌
𝑋
, from

𝑋 to 𝛼 be 𝑨𝛼
𝑋
and from 𝑌 to 𝛼 be 𝑨𝛼

𝑌
. Without loss of generality,

suppose all polygons are centered at the origin so that we can
omit the translation term t for now. Then by simple linear algebra,
𝑨𝛼
𝑋
= 𝑨𝛼

𝑌
𝑨𝑌
𝑋
. Since affine transformations are full-rank, 𝑨𝑌

𝑋
= 𝑰 if

and only if 𝑨𝛼
𝑋
= 𝑨𝛼

𝑌
, that is, 𝑋 and 𝑌 are the same in every sense

(e.g., zero Hausdorff distance) if their relative differences 𝑨𝛼
𝑋
, 𝑨𝛼

𝑌
to the anchor 𝛼 are the same. See Figure 1.

The problem with this comparison is that it is binary, i.e., we can
only tell that two polygons are identical if 𝑨𝛼

𝑋
= 𝑨𝛼

𝑌
, but we can

not quantify how different they are, in terms of Hausdorff distance
for this paper, if 𝑨𝛼

𝑋
≠ 𝑨𝛼

𝑌
. For example, it is easy to construct two

polygons 𝑍 , 𝑍
′
which have identical positive Hausdorff distances

to the anchor 𝛼 , but their corresponding affine transformations
𝑨𝛼
𝑍
,𝑨𝛼

𝑍
′ are drastically different.

Our solution is to compare 𝑋 and 𝑌 to a basis of random anchor
polygons {𝛼1, · · ·𝛼𝑑 }. The total difference between each pair of
affine transformations 𝑨𝛼𝑖

𝑋
,𝑨𝛼𝑖

𝑌
will be a good probabilistic approx-

imation of the similarity between 𝑋 and 𝑌 : the more pairs of affine
transformations are similar, the more likely the Hausdorff distance
between 𝑋 and 𝑌 is small. Formally, we hypothesize that there
exists a mapping 𝑔 such that

𝑑𝐻 (𝑋,𝑌 ) ≈ 𝑔(𝑨𝛼1
𝑋
, · · · ,𝑨𝛼𝑑

𝑋
;𝑨𝛼1

𝑌
, · · · ,𝑨𝛼𝑑

𝑌
) (1)

See Figure 2 for an illustration.
While the mapping does not have a closed-form expression, we

can learn 𝑔 from data using neural networks. It is conceptually re-
lated to deep metric learning [9] and implicit neural representations
[16] if we consider (𝑨𝛼1

𝑋
, · · · ,𝑨𝛼𝑑

𝑋
) and (𝑨𝛼1

𝑌
, · · · ,𝑨𝛼𝑑

𝑌
) as the co-

ordinates of 𝑋 and 𝑌 in the high-dimensional affine transformation
space R𝑛×𝑛×𝑑 with constraint

∀1 ≤ 𝑖 ≤ 𝑑,𝐴
𝛼𝑖
𝑋
, 𝐴

𝛼𝑖
𝑌

are affine matrices;

𝑔(𝑨𝛼1
𝑋
, · · · ,𝑨𝛼𝑑

𝑋
;𝑨𝛼1

𝑋
, · · · ,𝑨𝛼𝑑

𝑋
) = 0
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In practice, 𝑨𝛼
𝑋
alone is not sufficient to describe the transforma-

tion from𝑋 to𝛼 because polygons are not always centered and there
are residuals after affine transformation, i.e., some shape differences
are not affine transformable. Let (𝑨𝛼

𝑋
, 𝒕𝛼
𝑋
) := min𝑨,𝒕 𝑑𝐻 (𝑨𝑋 + 𝒕, 𝛼),

i.e. the affine transformation on 𝑋 that results in a polygon with
the least Hausdorff distance to 𝛼 . The actual transformation from
𝑋 to 𝛼 is

𝛼 = (𝑨𝛼
𝑋
𝑋 + 𝒕𝛼

𝑋
) + 𝜖𝛼

𝑋

where 𝜖𝛼
𝑋
⊂ 𝑀 is the non-affine residual. As is discussed in

Section 2.2, 𝑋 and 𝛼 can be approximated by sampling reference
points on the polygons. Let 𝑷𝑋 and 𝑷𝛼 be 2 × 𝑁 matrices that
represent the 𝑁 reference points on 𝑋 and 𝛼 , respectively, 𝑰 be a
1 × 𝑁 vector of all ones, and 𝝐𝛼

𝑋
be a 2 × 𝑁 matrix that represents

the non-affine residual translations between paired points in 𝑷𝑋
and 𝑷𝛼 . Then

𝑷𝛼 = 𝑨𝛼
𝑋
𝑷𝑋 + 𝒕𝛼𝑋 𝑰 + 𝝐𝛼

𝑋

We then extend our hypothesis in Equation 1 to

𝑑𝐻 (𝑋,𝑌 ) ≈ 𝑔({𝑨𝛼𝑖
𝑋
, 𝒕𝛼𝑖
𝑋
, 𝝐𝛼𝑖

𝑋
}𝑑𝑖=1; {𝑨

𝛼𝑖
𝑌
, 𝒕𝛼𝑖
𝑌
, 𝝐𝛼𝑖

𝑌
}𝑑𝑖=1) (2)

𝑨𝛼𝑖
𝑋
, 𝑨𝛼𝑖

𝑌
and 𝒕𝛼𝑖

𝑋
, 𝒕𝛼𝑖

𝑌
can be obtained by shape registration, but

there is no easy way to compute 𝝐𝛼𝑖
𝑋
, 𝝐𝛼𝑖

𝑌
. We hypothesize that the

residual Hausdorff distances 𝑑𝜖 (𝑋, 𝛼𝑖 ) := 𝑑𝐻 (𝑨𝛼𝑖
𝑋
𝑷𝑋 + 𝒕𝛼𝑖𝑋 , 𝑷𝛼𝑖 ),

𝑑𝜖 (𝑌, 𝛼𝑖 ) := 𝑑𝐻 (𝑨𝛼𝑖
𝑌
𝑷𝑌 + 𝒕𝛼𝑖𝑌 , 𝑷𝛼𝑖 ) are good proxies for measuring

the effect of 𝝐𝛼𝑖
𝑋
, 𝝐𝛼𝑖

𝑌
on 𝑑𝐻 (𝑋,𝑌 ), i.e.,

𝑑𝐻 (𝑋,𝑌 ) ≈ 𝑔({𝑨𝛼𝑖
𝑋
, 𝒕𝛼𝑖
𝑋
, 𝑑𝜖 (𝑋, 𝛼𝑖 )}𝑑𝑖=1; {𝑨

𝛼𝑖
𝑌
, 𝒕𝛼𝑖
𝑌
, 𝑑𝜖 (𝑌, 𝛼𝑖 )}𝑑𝑖=1)

(3)
The set 𝒓𝑋 := {𝑨𝛼𝑖

𝑋
, 𝒕𝛼𝑖
𝑋
, 𝑑𝜖 (𝑋, 𝛼𝑖 )}𝑑𝑖=1} is defined as the RATF of

polygon 𝑋 given random anchor polygons {𝛼𝑖 }𝑑𝑖=1. We will see in
Section 3.3 that in application there are several vectorized imple-
mentations of 𝒓𝑋 , while being mathematically equivalent, showing
very different performance on polygon retrieval tasks.

3.2 Polygon Affine Registration
In this research, we focus on the affine registration of simple poly-
gons with a single boundary. Inspired by the ICP method, we de-
velop a technique to solve the polygon affine registration problem
by reducing it to point set registration. This is achieved by sampling
points uniformly along the boundary of the polygons.

To sample points uniformly, we distribute the total number of
sample points among the edges of the polygon proportionally to
their lengths. On each edge, points are sampled equidistantly along
the line segment.

Given two point sets 𝑃 = {𝑝𝑖 }
𝑁𝑝

𝑖=1 and𝑄 = {𝑞 𝑗 }
𝑁𝑞

𝑗=1 sampled from
the polygons, we simplify the registration problem by centering
both point sets at the origin. This is done by subtracting the centroid
of each point set:

𝑝′𝑖 = 𝑝𝑖 −
1
𝑁𝑝

𝑁𝑝∑︁
𝑖=1

𝑝𝑖 , 𝑞′𝑗 = 𝑞 𝑗 −
1
𝑁𝑞

𝑁𝑞∑︁
𝑗=1

𝑞 𝑗 .

For point sets centered at the origin, the translation vector be-
comes zero, and the affine registration reduces to finding the op-
timal linear transformation 𝑨. The registration problem can be
formulated as:

min
𝑨,{𝑐𝑖 }

𝑁𝑝∑︁
𝑖=1



𝑨𝑝′𝑖 − 𝑞′𝑐𝑖 

22 .
We adopt an iterative approach similar to ICP to solve for 𝑨:
(1) Correspondence Step: For each point 𝑝′

𝑖
in 𝑃 , find the

nearest point in𝑄 under the current transformation estimate
𝑨𝑘 :

𝑐𝑖 = argmin
𝑗




𝑨𝑘𝑝
′
𝑖 − 𝑞

′
𝑗





2
.

(2) Transformation Update Step: Update the linear transfor-
mation by minimizing the sum of squared distances between
the transformed points and their correspondences:

𝑨𝑘+1 = argmin
𝑨

𝑁𝑝∑︁
𝑖=1



𝑨𝑝′𝑖 − 𝑞′𝑐𝑖 

22 .
The transformation update is a least squares problem, which can

be efficiently solved using standard linear algebra methods.
An initial transformation is required to start the iterative process.

We assume the initial transformation has the form 𝑨0 = 𝑠𝑹, where
𝑠 is a scale factor and 𝑹 is a rotation matrix.

To compute the scale factor 𝑠 , we calculate the diameter of the
point sets:

diameter(𝑃) = max
𝑖



𝑝′𝑖 

2 , diameter(𝑄) = max
𝑗




𝑞′𝑗 


2 ,
and set:

𝑠 =
diameter(𝑄)
diameter(𝑃) .

For the rotation matrix 𝑹, we perform Principal Component
Analysis (PCA) on the point sets to find their principal axes and
align them accordingly.

The complete polygon affine registration algorithm is summa-
rized in Algorithm 1.

3.3 RATFs Polygon Encoding Algorithm
Based on Equation 3 and Algorithm 1, we formally define the al-
gorithm to generate Random Affine Transformation Features of a
polygon in Algorithm 2.

Instead of simply extracting the elements of the affine transfor-
mation matrix 𝑨𝛼𝑖

𝑋
, we can alternatively introduce more geomet-

rical inductive bias. By Single Value Decomposition (SVD), one
can rewrite 𝑨𝛼𝑖

𝑋
uniquely as 𝑼 𝑖

𝚺
𝑖 (𝑽 𝑖 )⊤, where the matrices 𝑼 𝑖 , 𝑽 𝑖

represent rotations and the diagonal elements 𝜆𝑖1, 𝜆
𝑖
2 of matrix 𝚺

𝑖

represent scaling factors (i.e. eigenvalues). We can further derive
the rotation angles 𝜃𝑖

𝑈
and 𝜃𝑖

𝑉
from 𝑼 𝑖 and 𝑽 𝑖 , respectively. From

an information theoretic perspective, knowing the SVD matrices or
the rotation angles and the eigenvalues is equivalent to knowing the
affine transformation matrix, but more geometrically interpretable.
To investigate whether representing polygons with more explicit
geometrical quantities helps with the polygon retrieval task, we
construct three variants of RATFs:
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Algorithm 1: Polygon Affine Registration Algorithm
Data: Polygons 𝑋 , 𝑌 ; number of sampling points 𝑁𝑝 , 𝑁𝑞 ;

maximum iterations 𝑁 ; convergence threshold 𝜖
Result: Affine transformation matrix 𝑨, translation vector 𝒕
𝑷 ← Sample 𝑁𝑝 points on 𝑋 ;
𝑸 ← Sample 𝑁𝑞 points on 𝑌 ;
𝑝center ← 1

𝑁𝑝

∑𝑁𝑝

𝑖=1 𝑝𝑖 , 𝑞center ←
1
𝑁𝑞

∑𝑁𝑞

𝑗=1 𝑞 𝑗 ;
𝑝′
𝑖
← 𝑝𝑖 − 𝑝center, 𝑞′𝑗 ← 𝑞 𝑗 − 𝑞center;

diam𝑃 ← max𝑖


𝑝′

𝑖




2, diam𝑄 ← max𝑗




𝑞′𝑗 


2;
scale factor 𝑠 ← diam𝑄/diam𝑃 ;
Compute initial rotation 𝑹 using PCA to align 𝑃 and 𝑄 ;
Initialize transformation: 𝑨0 ← 𝑠𝑹;
𝑘 ← 0;
while 𝑘 < 𝑁 do

for 𝑖 ← 1 to 𝑁𝑝 do
Find correspondence: 𝑐𝑖 ← argmin𝑗




𝑨𝑘𝑝
′
𝑖
− 𝑞′

𝑗





2
;

end
Update transformation:
𝑨𝑘+1 ← argmin𝑨

∑𝑁𝑝

𝑖=1


𝑨𝑝′

𝑖
− 𝑞′𝑐𝑖



2
2;

if ∥𝑨𝑘+1 −𝑨𝑘 ∥𝐹 < 𝜖 then
𝑘 ← 𝑘 + 1;
break;

end
𝑘 ← 𝑘 + 1;

end
Compute translation: 𝒕 ← 𝑞center −𝑨𝑘𝑝center;
return 𝑨𝑘 , 𝒕 ;

Algorithm 2: Random Affine Transformation Features
(RATFs) Algorithm
Data: Polygon 𝑋 ⊂ 𝑀 , number of sampling points 𝑁 ,

random anchor polygons {𝛼𝑖 }𝑑𝑖=1
Result: Random affine transformation features 𝒓𝑋 of 𝑋
𝒓𝑋 ← ∅;
𝑷𝑋 ← Sample 𝑁 points on 𝑋 ;
for 𝑖 ← 1 to 𝑑 do

𝑷𝛼𝑖 ← Sample 𝑁 points on 𝛼𝑖 ;
(𝑨𝛼𝑖

𝑋
, 𝒕𝛼𝑖
𝑋
) ← Shape registration for (𝑋, 𝛼𝑖 );

(𝐴𝑖
1,1, 𝐴

𝑖
1,2, 𝐴

𝑖
2,1, 𝐴

𝑖
2,2) ← Extract the elements of 𝑨𝛼𝑖

𝑋
;

(𝑡𝑖1, 𝑡
𝑖
2) ← Extract the elements of 𝒕𝛼𝑖

𝑋
;

𝑑𝑖𝜖 ← 𝑑𝐻 (𝑨𝛼𝑖
𝑋
𝑷𝑋 + 𝒕𝛼𝑖𝑋 , 𝑷𝛼𝑖 ) for (𝑋, 𝛼𝑖 );

𝒓𝑋 ← 𝒓𝑋 ∪ {𝐴𝑖
1,1, 𝐴

𝑖
1,2, 𝐴

𝑖
2,1, 𝐴

𝑖
2,2, 𝑡

𝑖
1, 𝑡

𝑖
2, 𝑑

𝑖
𝜖 };

end
return 𝒓𝑋

Basic Variant The same as described in Algorithm 2.

SVD Variant 𝒓𝑋 :=
⋃𝑑

𝑖=1{𝑼 𝑖
1,1, 𝑼

𝑖
2,1, 𝑽

𝑖
1,1, 𝑽

𝑖
2,1, 𝜆

𝑖
1, 𝜆

𝑖
2, 𝑡

𝑖
1, 𝑡

𝑖
2, 𝑑

𝑖
𝜖 )

Rotation-Scale Variant 𝒓𝑋 :=
⋃𝑑

𝑖=1{𝜃𝑖𝑈 , 𝜃
𝑖
𝑉
, 𝜆𝑖,1, 𝜆𝑖,2, 𝑡𝑖1, 𝑡

𝑖
2, 𝑑

𝑖
𝜖 }

The method for obtaining the affine transformation between two
polygons is detailed in Section 3.2.

Experiments show that, slightly conter-intuitively, the basic vari-
ant consistently outperforms the others. It may indicate that explicit
rotation angles and scaling factors are not the proper inductive bias
for the task of preserving Hausdorff distance.

3.4 Neural Polygon Embedding
Having encoded rich information in RATFs, we only need a simple
neural network to learn the polygon embedding. The model used
in this paper is a 3-layer FFN (feed-forward-network), following
the theory that a model with a hidden layer is able to approxi-
mate highly complex non-linear mapping. Specifically, the neural
polygon embedding is

𝑒𝑋 =𝑾3 (𝑅𝑒𝐿𝑈 (𝑾2 (𝑅𝑒𝐿𝑈 (𝑾1𝒓
⊤
𝑋 + 𝒃1)) + 𝒃2)) + 𝒃3

Let the dimension of polygon encoding be 𝑑 . The dimensions of
𝑾1,𝑾2,𝑾3 are 64 × 𝑑 , 32 × 64 and 8 × 32, respectively. This naive
design of neural network is only to demonstrate the effectiveness
of RATFs. There is nothing that stops researchers to build more
advanced neural networks to learn the embeddings. We leave this
to future work.

Given a pair of polygons𝑋,𝑌 in the training data and the ground-
truth Hausdorff distance 𝑑𝐻 (𝑋,𝑌 ), the loss is the mean squared
error between the cosine distance of polygon embeddings and
𝑑𝐻 (𝑋,𝑌 )

L(𝑋,𝑌 ) =
����1 − ⟨𝑒𝑋 , 𝑒𝑌 ⟩|𝑒𝑋 | |𝑒𝑌 |

− 𝑑𝐻 (𝑋,𝑌 )
����2

By minimizing this loss, the learned neural polygon embedding
𝑒𝑋 will have the desirable property that smaller cosine distance
implies smaller Hausdorff distance. It is extremely useful for fast
polygon retrieval – we can use cosine similarity to rank and retrieve
similar polygons from the database.

4 EXPERIMENTS
In this section, we aim to demonstrate the representation capability
of RATFs on preserving Hausdorff distance between polygons. For
quality control, we focus on synthetic data where polygons are
randomly generated and ensured to be simple polygons (i.e., no
holes). We train three variants of neural polygon embedding models
– Basic, SVD and Rotate-Scale – corresponding to the three variants
of RATFs. Considering polygon retrieval as a ranking task, we eval-
uate the test performance of learned neural polygon embeddings
with commonly used metrics such as Mean Squared Error (MSE),
Hit@k and Mean Reciprocal Rank (MRR).

4.1 Dataset Preparation and Evaluation Metrics
There are four factors that control the diversity of synthetic poly-
gons: the number of edges 𝑁data, the radius 𝑟 , the spikeness 𝑠 , and
the irregularity 𝑖𝑟𝑟 . We briefly explain their meanings. The number
of edges, naturally, means how many edges the polygon has, e.g.
a hexagon has 𝑁data = 6. 𝑁data can be constant for a dataset or a
random number, i.e., the dataset consists of polygons of different
edge numbers. The radius means the average distance from each



GeoSearch’24, October 29-November 1, 2024, Atlanta, GA, USA Wang, et al.

Table 1: Experiments with pentagons. The anchor polygons are also pentagons.

PE Variant Basic SVD Rotate-Scale

#Anchor 4 8 16 32 4 8 16 32 4 8 16 32

MSE (↓) 0.1029 0.1021 0.1015 0.1013 0.1113 0.1089 0.1074 0.1059 0.1243 0.1203 0.1204 0.1184
Hit@100 (↑) 0.5094 0.5042 0.5241 0.5491 0.4319 0.4783 0.4853 0.5253 0.3730 0.3941 0.3991 0.4159
MRR (↑) 0.7541 0.7756 0.7665 0.7736 0.6829 0.6935 0.7042 0.7244 0.6225 0.6285 0.6182 0.6251

Table 2: Experiments with hexagons. The anchor polygons are also hexagons.

PE Variant Basic SVD Rotate-Scale

#Anchor 4 8 16 32 4 8 16 32 4 8 16 32

MSE (↓) 0.0911 0.0978 0.0968 0.0959 0.1111 0.1027 0.1014 0.1010 0.1207 0.1158 0.1140 0.1120
Hit@100 (↑) 0.4208 0.4626 0.4644 0.4808 0.3751 0.4033 0.4432 0.4497 0.3115 0.3340 0.3508 0.3677
MRR (↑) 0.7191 0.7232 0.7306 0.7355 0.6092 0.6731 0.6864 0.6947 0.5542 0.5674 0.5701 0.5898

Table 3: Experiments with a randommixture of pentagons
and hexagons. The anchor polygons are also a random mix-
ture of pentagons and hexagons.

PE Variant Basic SVD Rotate-Scale

#Anchor 32 32 32

MSE (↓) 0.0938 0.0979 0.1098
Hit@100 (↑) 0.4750 0.4507 0.3706
MRR (↑) 0.7288 0.6665 0.5784

vertex to the center of the polygon, affecting the size of the polygon.
Without loss of generality, we set the radius of all datasets to be 1,
since we care about the shape similarity, which is invariant under
uniform scaling, instead of size differences. The spikeness controls
the angle of the sharpest spike of the polygon, and the irregularity
controls the evenness of the polygon, i.e., whether the angles by
connecting two neighboring vertices and the center have similar
radians. We randomly pick spikeness 𝑠 and irregularity 𝑖𝑟𝑟 for each
polygon we generate.

Each train set contains 10,000 random polygons and their pair-
wise (i.e. 100,000,000 in total) ground-truth Hausdorff distances.
Each test set contains 1,000 random polygons and their pairwise
ground-truth Hausdorff distances. Let the polygons in the test set
be {𝑇𝑖 }𝑛𝑖=1. For each query polygon 𝑇𝑖 in the test set, we define the
polygons that have top 10 smallest Hausdorff distances (excluding
the query polygon itself) to form the set of ground-truth positives
Pos𝑖 , and the rest 989 polygons to be the set of ground-truth nega-
tives Neg𝑖 . Suppose the ascending ranking of polygons according
to the neural polygon embedding model is 𝑇𝑖1 ,𝑇𝑖2 , · · ·𝑇𝑖𝑛−1 (exclud-
ing 𝑇𝑖 itself). Given this setting, we formally define the following
evaluation metrics:

Mean Squared Error (MSE)

𝑀𝑆𝐸 =
1

𝑛(𝑛 − 1)

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

1(𝑖 ≠ 𝑗)L(𝑇𝑖 ,𝑇𝑗 )

Hit@k

𝐻𝑖𝑡@𝑘 =
1
𝑛

𝑛∑︁
𝑖=1

|Pos𝑖 ∩ {𝑇𝑖1 · · ·𝑇𝑖𝑘 }|
10

Mean Reciprocal Rank (MRR)

𝑀𝑅𝑅 =
1
𝑛

𝑛∑︁
𝑖=1

1
min{𝑘 | 𝑇𝑖𝑘 ∈ Pos𝑖 }

MAE measures the raw difference between ground-truth Haus-
dorff distances and the predictions made by the neural polygon
embedding model. If we do not care about ranking – i.e., we do not
need the retrieved polygons to be the "most similar" but just "similar
enough", MSE is the good metric to look at. Hit@k measures the
proportion of ground-truth positives that fall into the top 𝑘 model
predictions, i.e. how likely the top 𝑘 model predictions contain the
ground-truths. MRR measures how top the model predictions rank
the ground-truth positives, i.e., the higher MRR, the more likely
one can find ground-truth positives early in the ranking. Three
measures focus on different aspects of the ranking quality, com-
bined to form a comprehensive evaluation framework for testing
the representational power of RATFs.

4.2 Experiment Results
We report the MSE, Hit@100 and MRR values for polygon retrieval
on pentagons and hexagons.We also construct a dataset of polygons
with mixed numbers of edges, which resembles the real-world
scenarios better. The results are present in Table 1, Table 2 and Table
3. Our neural polygon embedding model, though only trained on a
very small amount of data, achieves fairly good retrieval quality on
the test set. It is worth noting that, whereas increasing the number
of anchor polygons in general has a positive impact on the model
performance in all situations, using 4 random anchor polygons
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alone yields satisfactory results and the increment by doubling
the anchor size diminishes. It is evidence that the representational
power of RATFs comes from the careful design of features instead
of brute-force dimension increase.

We can also notice that the basic variant of the neural polygon
embedding model consistently outperforms the other two variants.
It is an interesting finding because the raw elements of affine trans-
formation matrices seem to preserve Hausdorff distances better
than the more geometrical interpretation of rotation and scaling. It
is worth future investigation.

Compared against raw Hausdorff distance computation, the
speedup of using neural polygon embeddings is significant and
massive. On the same machine without multi-processing, using
SciPy’s implementation as the baseline1, computing the Hausdorff
distances of 1 million pairs of polygons sequentially takes 63 sec-
onds, while computing the cosine distances in batches of 1000
pairs only takes around 0.5 milliseconds, 126,000 times speeding-up.
The larger the dataset and the larger the batch size, the larger the
speedup, since sequential Hausdorff distance computation is 𝑂 (𝑛)
time complexity while the batched cosine distance computation, as
long as the memory holds, is 𝑂 (1).

5 CONCLUSION AND FUTUREWORK
In conclusion, this paper takes a solid step forward towards general
neural polygon representations. While there are existing work that
encodes polygons as sequences of vertices or closed polylines, we
propose a novel approach to represent polygons as collections of an-
chor polygons, just like how Fourier transformation views functions
as collections of functions. This approach naturally circumvents
many long-standing problems in vertex-based and polyline-based
polygon representations such as variable length, non-convexity and
cycle invariance, while remains extremely simplistic. We use a very
naive 3-layer neural network to achieve good polygon retrieval
quality and magnitude faster computation speed, demonstrating
the immense potential of our RATFs method in geospatial searching
applications (e.g., in [2] and [11]).

We expect to see future work in two major directions: one direc-
tion is to develop more advanced neural networks (of course better
than a 3-layer FFN) to boost the polygon retrieval performance to
industry-applicable level and find real-world applications in large
polygon databases; the other direction is to dig deeper into the sci-
ence behind RATFs, for example, to what extent the hypothesis we
make in Equation 3 holds and whether we can find better proxies
to deal with non-affine residuals.
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